Development and parameterization of a control-oriented electrochemical model of lithium-ion batteries for battery-management-systems applications

电池(电) 计算 等效电路 电压 测功机 控制理论(社会学) 计算机科学 MATLAB语言 电化学电池 生物系统
作者
Yizhao Gao,Chenghao Liu,Shun Chen,Xi Zhang,Guodong Fan,Chunbo Zhu
出处
期刊:Applied Energy [Elsevier]
卷期号:309: 118521-118521
标识
DOI:10.1016/j.apenergy.2022.118521
摘要

• A reduced-order electrochemical model is proposed. • Identify an accurate model with cell teardown and parameter estimation. • The cell terminal voltage and internal electrochemical states are validated. • The computation efficiency of the electrochemical model on hardware is analyzed. A precise electrochemical battery model is critical for advanced battery management systems to improve the safety and efficiency of electric vehicles. This paper presents a novel methodology to develop and parameterize the electrochemical model through cell teardown and current/voltage data estimation. The partial differential equations of ionic electrolyte and potential dynamics in the solid and liquid phases are solved and reduced to a low-order system with Padé approximation. The systematic identification procedure is proposed by first dividing the parameters into fixed geometric properties, thermodynamics, and kinetics. Then the cells are dismantled. Subsequent chemical and thermodynamic analyses, including half-cell tests, are conducted for parameter extraction. Next, the parameterized model is validated with extensive experimental data, illustrating the superior capability of predicting cell voltage with root-mean-square errors of 8.90 mV at 2C and 13.98 mV for Urban Dynamometer Driving Schedule profile at 0 °C. The accuracy of the cell internal electrochemical states of the reduced model is verified as well. Comparative studies concerning model accuracy and computation efficiency on hardware reveal that the model is 31% more accurate than equivalent circuit models but occupies similar computation resources. Finally, the need and advantages of combining cell teardown and parameter estimation in achieving a precise electrochemical model are addressed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的宛白完成签到,获得积分20
1秒前
3秒前
我崽了你发布了新的文献求助30
4秒前
5秒前
fanf完成签到,获得积分10
6秒前
完美世界应助mayun95采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
ashin17发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助cxw采纳,获得10
12秒前
12秒前
呼噜呼噜毛完成签到 ,获得积分10
14秒前
14秒前
烟花应助QinQin采纳,获得10
14秒前
JamesPei应助猪猪hero采纳,获得10
15秒前
15秒前
16秒前
黄颖完成签到,获得积分10
16秒前
18秒前
19秒前
CodeCraft应助Nora采纳,获得10
20秒前
灵巧帽子发布了新的文献求助20
21秒前
小吴同学发布了新的文献求助10
23秒前
黄芪2号完成签到,获得积分10
23秒前
23秒前
23秒前
Jes完成签到,获得积分10
24秒前
凶狠的棒棒糖关注了科研通微信公众号
24秒前
谦让雨柏完成签到 ,获得积分10
24秒前
24秒前
25秒前
25秒前
黄芪2号发布了新的文献求助10
26秒前
微笑翠桃发布了新的文献求助10
27秒前
浅蓝色的盛夏完成签到 ,获得积分10
28秒前
wen完成签到,获得积分10
28秒前
张123完成签到,获得积分10
30秒前
古月完成签到,获得积分10
30秒前
Cristina2024完成签到,获得积分10
31秒前
ssy发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716