Development and parameterization of a control-oriented electrochemical model of lithium-ion batteries for battery-management-systems applications

电池(电) 计算 等效电路 电压 测功机 控制理论(社会学) 计算机科学 MATLAB语言 电化学电池 生物系统
作者
Yizhao Gao,Chenghao Liu,Shun Chen,Xi Zhang,Guodong Fan,Chunbo Zhu
出处
期刊:Applied Energy [Elsevier]
卷期号:309: 118521-118521
标识
DOI:10.1016/j.apenergy.2022.118521
摘要

• A reduced-order electrochemical model is proposed. • Identify an accurate model with cell teardown and parameter estimation. • The cell terminal voltage and internal electrochemical states are validated. • The computation efficiency of the electrochemical model on hardware is analyzed. A precise electrochemical battery model is critical for advanced battery management systems to improve the safety and efficiency of electric vehicles. This paper presents a novel methodology to develop and parameterize the electrochemical model through cell teardown and current/voltage data estimation. The partial differential equations of ionic electrolyte and potential dynamics in the solid and liquid phases are solved and reduced to a low-order system with Padé approximation. The systematic identification procedure is proposed by first dividing the parameters into fixed geometric properties, thermodynamics, and kinetics. Then the cells are dismantled. Subsequent chemical and thermodynamic analyses, including half-cell tests, are conducted for parameter extraction. Next, the parameterized model is validated with extensive experimental data, illustrating the superior capability of predicting cell voltage with root-mean-square errors of 8.90 mV at 2C and 13.98 mV for Urban Dynamometer Driving Schedule profile at 0 °C. The accuracy of the cell internal electrochemical states of the reduced model is verified as well. Comparative studies concerning model accuracy and computation efficiency on hardware reveal that the model is 31% more accurate than equivalent circuit models but occupies similar computation resources. Finally, the need and advantages of combining cell teardown and parameter estimation in achieving a precise electrochemical model are addressed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SS小天使发布了新的文献求助20
1秒前
s0x0y0发布了新的文献求助10
1秒前
4秒前
5秒前
11秒前
无花果应助s0x0y0采纳,获得10
13秒前
五小完成签到 ,获得积分20
14秒前
高兴荔枝发布了新的文献求助10
14秒前
pgg完成签到,获得积分20
15秒前
xiaobei完成签到,获得积分10
15秒前
qujunming完成签到 ,获得积分10
16秒前
研友_8Y26PL发布了新的文献求助10
17秒前
18秒前
19秒前
迅速冥茗完成签到,获得积分10
21秒前
David给David的求助进行了留言
22秒前
vvsunjx完成签到,获得积分20
23秒前
MY完成签到,获得积分10
25秒前
Hello应助淡定的花生采纳,获得10
31秒前
33秒前
35秒前
华仔应助珍珠奶茶采纳,获得10
36秒前
39秒前
五小完成签到 ,获得积分10
40秒前
likemangren发布了新的文献求助10
40秒前
SharonYYZ完成签到,获得积分10
41秒前
苗2完成签到 ,获得积分10
41秒前
你说的都对完成签到,获得积分10
43秒前
44秒前
lifangqi发布了新的文献求助10
44秒前
46秒前
48秒前
miao发布了新的文献求助10
49秒前
天上的云在偷偷看你完成签到 ,获得积分10
50秒前
CFF发布了新的文献求助10
52秒前
likemangren完成签到,获得积分10
52秒前
56秒前
58秒前
乐乐应助柳斯凌采纳,获得10
59秒前
59秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155762
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871439
捐赠科研通 2465303
什么是DOI,文献DOI怎么找? 1312209
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905