亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image segmentation of Leaf Spot Diseases on Maize using multi-stage Cauchy-enabled grey wolf algorithm

计算机科学 水准点(测量) 局部最优 趋同(经济学) 粒子群优化 早熟收敛 数学优化 分割 人口 算法 柯西分布 遗传算法 模式识别(心理学) 人工智能 机器学习 数学 统计 人口学 大地测量学 社会学 地理 经济 经济增长
作者
Helong Yu,Jiuman Song,Chengcheng Chen,Ali Asghar Heidari,Jiawen Liu,Huiling Chen,Atef Zaguia,Majdi Mafarja
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:109: 104653-104653 被引量:89
标识
DOI:10.1016/j.engappai.2021.104653
摘要

Grey wolf optimizer (GWO) is a widespread metaphor-based algorithm based on the enhanced variants of velocity-free particle swarm optimizer with proven defects and shortcomings in performance. Regardless of the proven defect and lack of novelty in this algorithm, the GWO has a simple algorithm and it may face considerable unbalanced exploration and exploitation trends. However, GWO is easy to be utilized, and it has a low capacity to deal with multi-modal functions, and it quickly falls into the optima trap or fails to find the global optimal solution. To improve the shortcomings of the basic GWO, this paper proposes an improved GWO called multi-stage grey wolf optimizer (MGWO). By dividing the search process into three stages and using different population updating strategies at each stage, the MGWO’s optimization ability is improved while maintaining a certain convergence speed. The MGWO cannot easily fall into premature convergence and has a better ability to get rid of the local optima trap than GWO. Meanwhile, the MGWO achieves a better balance of exploration and exploitation and has a rough balance curve. Hence, the proposed MGWO can obtain a higher-quality solution. Based on verification on the thirty benchmark functions of IEEE CEC2017 as the objective functions, the simulation experiments in which MGWO compared with some swarm-based optimization algorithms and the balance and diversity analysis were conducted. The results verify the effectiveness and superiority of MGWO. Finally, the MGWO was applied to the multi-threshold image segmentation of Leaf Spot Diseases on Maize at four different threshold levels. The segmentation results were analysed by comparing each comparative algorithm’s PSNR, SSIM, and FSIM. The results proved that the MGWO has noticeable competitiveness, and it can be used as an effective optimizer for multi-threshold image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
wodetaiyangLLL完成签到 ,获得积分10
18秒前
Dester发布了新的文献求助10
20秒前
爆米花应助啦咯哦哦采纳,获得10
31秒前
SC完成签到,获得积分10
42秒前
归尘举报欢欢求助涉嫌违规
53秒前
Dester完成签到,获得积分10
1分钟前
1分钟前
啦咯哦哦发布了新的文献求助10
1分钟前
SciGPT应助啦咯哦哦采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
YifanWang给叶子的求助进行了留言
2分钟前
lixiniverson完成签到 ,获得积分10
2分钟前
神勇的蛋挞完成签到,获得积分10
2分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
7NEF发布了新的文献求助10
3分钟前
归尘给Edison的求助进行了留言
3分钟前
YifanWang完成签到,获得积分0
4分钟前
Vvvkkk发布了新的文献求助30
4分钟前
李健应助jianwuzhou采纳,获得10
4分钟前
4分钟前
wcc发布了新的文献求助10
4分钟前
chiazy完成签到 ,获得积分10
4分钟前
wcc完成签到,获得积分20
4分钟前
4分钟前
星火完成签到,获得积分20
4分钟前
星火发布了新的文献求助10
5分钟前
5分钟前
5分钟前
jianwuzhou发布了新的文献求助10
5分钟前
5分钟前
在水一方应助jianwuzhou采纳,获得10
5分钟前
5分钟前
5分钟前
Hasee完成签到 ,获得积分10
5分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067260
捐赠科研通 2750124
什么是DOI,文献DOI怎么找? 1509045
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896