Model predictive control of Lithium-ion batteries: Development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms

淡出 电池(电) 模型预测控制 锂离子电池 降级(电信) 荷电状态 电压 计算机科学 工作(物理) 充电周期 汽车工程 控制(管理) 可靠性工程 工程类 模拟 电气工程 机械工程 功率(物理) 汽车蓄电池 人工智能 物理 操作系统 量子力学
作者
Gyuyeong Hwang,Niranjan Sitapure,Jiyoung Moon,H. Lee,Sungwon Hwang,Joseph Sang‐Il Kwon
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:435: 134768-134768 被引量:42
标识
DOI:10.1016/j.cej.2022.134768
摘要

Recently, given the high demand of electric vehicles, the implementation of a battery management system (BMS) for efficient energy use, safety, and state of health estimation has garnered significant attention. For a robust BMS, the battery model which can help the monitoring and control of battery behaviors such as voltage, temperature, stress, and capacity fade should have a high accuracy. Existing battery models like single-particle model (SPM), and pseudo-two-dimensional models have either shown a mismatch with experiments or have a large computational time, both of which are not conducive to fast control of BMS. Furthermore, since existing enhanced SPMs in conjunction with classical and even advanced control methodologies can only elucidate empirically estimated inter-cycle capacity fade, they cannot be applied to intra-cycle control of battery charging. To handle these concerns, in this work, a new battery model is constructed by integrating the enhanced SPM with the first-principled chemical/mechanical degradation physics to accurately predict dynamic intra-cycle capacity fade. Subsequently, the proposed battery model is incorporated into a model predictive control framework to manipulate the applied current to minimize the capacity fade during the charging of a battery. Overall, the developed framework (a) allowed the accurate prediction of both inter-cycle and intra-cycle chemical/mechanical degradation, and the state of the battery (i.e., voltage, temperature, and mechanical stress); (b) enabled experimental model validation at different operation conditions; and (c) yielded a superior input current profile, which minimized the intra-cycle capacity fade, as compared to the traditional constant current-constant voltage (CC-CV) charging protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LL发布了新的文献求助10
1秒前
李爱国应助bei采纳,获得10
4秒前
科研通AI5应助哈哈哈采纳,获得10
5秒前
不敢装睡发布了新的文献求助10
5秒前
5秒前
微兔小妹完成签到 ,获得积分10
6秒前
非而者厚应助isonomia采纳,获得200
8秒前
zy3637发布了新的文献求助20
8秒前
10秒前
11秒前
15秒前
16秒前
cxdhxu完成签到 ,获得积分10
16秒前
文静达发布了新的文献求助10
16秒前
共享精神应助Kvolu29采纳,获得10
16秒前
JGCATZ发布了新的文献求助200
17秒前
简单的凡儿完成签到,获得积分10
17秒前
香蕉觅云应助wuxunxun2015采纳,获得10
19秒前
bkagyin应助天天小女孩采纳,获得10
21秒前
lv发布了新的文献求助10
22秒前
24秒前
CipherSage应助super采纳,获得10
26秒前
27秒前
28秒前
Akim应助lv采纳,获得10
29秒前
29秒前
30秒前
wttt完成签到,获得积分10
30秒前
zzz完成签到,获得积分10
31秒前
不敢装睡发布了新的文献求助10
31秒前
团1111发布了新的文献求助10
32秒前
MchemG应助太花采纳,获得10
33秒前
内向的青荷完成签到,获得积分10
33秒前
xiaomaxia发布了新的文献求助10
34秒前
zxh完成签到,获得积分10
34秒前
35秒前
叶一只完成签到,获得积分10
36秒前
文静达完成签到,获得积分10
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761895
求助须知:如何正确求助?哪些是违规求助? 3305631
关于积分的说明 10135016
捐赠科研通 3019709
什么是DOI,文献DOI怎么找? 1658368
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754766