Model predictive control of Lithium-ion batteries: Development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms

淡出 电池(电) 模型预测控制 锂离子电池 降级(电信) 荷电状态 电压 计算机科学 充电周期 锂(药物) 汽车工程 控制(管理) 可靠性工程 工程类 模拟 电气工程 功率(物理) 电信 汽车蓄电池 人工智能 物理 操作系统 量子力学
作者
Gyuyeong Hwang,Niranjan Sitapure,Jiyoung Moon,H. Lee,Sungwon Hwang,Joseph Kwon
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:435: 134768-134768 被引量:24
标识
DOI:10.1016/j.cej.2022.134768
摘要

Recently, given the high demand of electric vehicles, the implementation of a battery management system (BMS) for efficient energy use, safety, and state of health estimation has garnered significant attention. For a robust BMS, the battery model which can help the monitoring and control of battery behaviors such as voltage, temperature, stress, and capacity fade should have a high accuracy. Existing battery models like single-particle model (SPM), and pseudo-two-dimensional models have either shown a mismatch with experiments or have a large computational time, both of which are not conducive to fast control of BMS. Furthermore, since existing enhanced SPMs in conjunction with classical and even advanced control methodologies can only elucidate empirically estimated inter-cycle capacity fade, they cannot be applied to intra-cycle control of battery charging. To handle these concerns, in this work, a new battery model is constructed by integrating the enhanced SPM with the first-principled chemical/mechanical degradation physics to accurately predict dynamic intra-cycle capacity fade. Subsequently, the proposed battery model is incorporated into a model predictive control framework to manipulate the applied current to minimize the capacity fade during the charging of a battery. Overall, the developed framework (a) allowed the accurate prediction of both inter-cycle and intra-cycle chemical/mechanical degradation, and the state of the battery (i.e., voltage, temperature, and mechanical stress); (b) enabled experimental model validation at different operation conditions; and (c) yielded a superior input current profile, which minimized the intra-cycle capacity fade, as compared to the traditional constant current-constant voltage (CC-CV) charging protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杜发布了新的文献求助10
1秒前
1秒前
MUAL完成签到,获得积分10
1秒前
2秒前
烟花应助花凉采纳,获得10
2秒前
3秒前
想吃芝士焗饭完成签到 ,获得积分10
3秒前
妖精完成签到 ,获得积分10
3秒前
宁阿霜发布了新的文献求助10
4秒前
fxf完成签到,获得积分10
4秒前
慕青应助haonanchen采纳,获得10
4秒前
怕黑的老九完成签到,获得积分10
4秒前
香蕉觅云应助liujinjin采纳,获得10
4秒前
4秒前
隐形曼青应助公冶君浩采纳,获得10
5秒前
端庄洪纲完成签到 ,获得积分10
6秒前
6秒前
天天快乐应助热情的凝云采纳,获得10
7秒前
7秒前
xudanhong完成签到,获得积分20
8秒前
8秒前
8秒前
小朱发布了新的文献求助10
8秒前
七七完成签到 ,获得积分10
8秒前
隐形的小蜜蜂完成签到 ,获得积分10
9秒前
哎嘿应助开心的日记本采纳,获得10
9秒前
9秒前
Jieh完成签到,获得积分10
9秒前
xudanhong发布了新的文献求助10
12秒前
12秒前
热情的凝云完成签到,获得积分20
13秒前
KING完成签到,获得积分10
13秒前
MissZ完成签到,获得积分10
13秒前
gf79009完成签到,获得积分10
13秒前
三金完成签到,获得积分10
14秒前
14秒前
15秒前
FightingW完成签到,获得积分10
16秒前
江子骞完成签到 ,获得积分10
16秒前
隐形曼青应助smallsix采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151531
求助须知:如何正确求助?哪些是违规求助? 2802910
关于积分的说明 7851162
捐赠科研通 2460322
什么是DOI,文献DOI怎么找? 1309707
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760