Progress prediction of Parkinson's disease based on graph wavelet transform and attention weighted random forest

过度拟合 随机森林 计算机科学 人工智能 特征选择 模式识别(心理学) 图形 均方误差 小波变换 决策树 小波 特征(语言学) 机器学习 数据挖掘
作者
Zaifa Xue,Tao Zhang,Liqin Lin
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 117483-117483
标识
DOI:10.1016/j.eswa.2022.117483
摘要

• A novel model is proposed to predict the severity of Parkinson's disease. • More efficient frequency features are obtained by graph wavelet transform. • The attentional mechanism weights decision tree models in the random forest. • We achieve better prediction performance compared to the state-of-the-art methods. The progress prediction of Parkinson's disease (PD) is one of the most important issues in early diagnosis of PD. Many researches have been conducted in this field, however, most existing methods focus on the selection of baseline features and regressors to reduce prediction errors. Different from the previous studies, the main goal of this paper is to obtain more effective features by feature transformation of baseline features to improve the prediction performance. Therefore, this paper proposes a prediction model based on graph wavelet transform (GWT) and attention weighted random forest (RF). Firstly, a clustering algorithm is adopted to reduce the prediction error of the model. Next, a multi-scale analysis of the feature vectors by GWT is conducted to yield a frequency feature representation that is more relevant to the target value. Finally, the frequency features are input into the attention weighted RF to predict the severity of PD, allowing the results of decision trees with better predictive performance in the RF to be highlighted while reducing the risk of overfitting. The effectiveness of the method is evaluated on the Parkinson's telemonitoring dataset collected by the University of Oxford. The experimental results show that the mean absolute error and root mean squared error of the proposed method for predicting PD severity (motor- and total-UPDRS) are 1.53, 2.13 and 1.91, 2.70, respectively. Compared with the quoted optimal method, the errors are reduced by 7.27%, 4.05% and 5.45%, 1.10%, respectively. This indicates that the proposed method has better prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文如娆发布了新的文献求助10
1秒前
ding应助冷艳的书雪采纳,获得10
2秒前
初衷完成签到,获得积分10
2秒前
冷静剑成发布了新的文献求助10
2秒前
kkqq发布了新的文献求助10
2秒前
成就的书包完成签到,获得积分10
3秒前
大个应助一个大西瓜采纳,获得10
3秒前
3秒前
hangzhen完成签到,获得积分20
3秒前
大个应助zcg采纳,获得10
4秒前
罗亚亚完成签到,获得积分10
4秒前
番薯圆完成签到,获得积分10
4秒前
万万想到了完成签到,获得积分10
5秒前
5秒前
5秒前
香蕉觅云应助淡然的雨莲采纳,获得10
5秒前
zxz发布了新的文献求助10
6秒前
lan发布了新的文献求助10
6秒前
7秒前
7秒前
gaoyue完成签到,获得积分10
9秒前
evermore完成签到,获得积分10
9秒前
10秒前
Pandaer发布了新的文献求助10
10秒前
冷艳的书雪完成签到,获得积分20
10秒前
称心的半邪完成签到,获得积分10
11秒前
星语花发布了新的文献求助10
12秒前
zsc完成签到,获得积分20
12秒前
独特夜绿发布了新的文献求助10
12秒前
jcccc完成签到,获得积分20
12秒前
安安发布了新的文献求助10
12秒前
petrichor应助evermore采纳,获得10
13秒前
朱亚雷发布了新的文献求助10
13秒前
14秒前
景木游发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
zxz完成签到,获得积分10
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514919
求助须知:如何正确求助?哪些是违规求助? 3097284
关于积分的说明 9234961
捐赠科研通 2792241
什么是DOI,文献DOI怎么找? 1532370
邀请新用户注册赠送积分活动 712002
科研通“疑难数据库(出版商)”最低求助积分说明 707071