Memristive KDG-BNN: Memristive binary neural networks trained via knowledge distillation and generative adversarial networks

计算机科学 鉴别器 记忆电阻器 人工神经网络 二进制数 人工智能 计算机工程 电子工程 算术 数学 电信 探测器 工程类
作者
Tongtong Gao,Yue Zhou,Shukai Duan,Xiaofang Hu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:249: 108962-108962 被引量:7
标识
DOI:10.1016/j.knosys.2022.108962
摘要

With the increasing requirements for the combination of software and hardware, network compression and hardware deployment have become hot research topics. In network compression, binary neural networks (BNNs) are widely applied in artificial intelligence chips because of memory saving, high computational efficiency, and hardware friendliness. However, there is a performance gap between BNNs and full-precision neural networks (FNNs). This paper proposes a BNN training framework called KDG-BNN, consisting of three modules: a full-precision network, a 1-bit binary network, and a discriminator. The full-precision network guides the 1-bit binary network to train through distillation loss in this framework. Meanwhile, the 1-bit binary network acts as a generator and conducts adversarial training with the discriminator. By simultaneously optimizing the adversarial loss and distillation loss, the 1-bit binary network can learn the feature distribution of the full-precision network more accurately. Then, the generative adversarial network (GAN) is replaced by Wasserstein GAN with gradient penalty (WGAN-GP) to deal with gradient disappearance, and KDG-BNN is developed into KDWG-BNN. Experiments show that AdamBNN trained with KDWG-BNN can achieve 85.89% and 70.7% accuracy on CIFAR-10 and ImageNet, respectively, exceeding 0.76% on CIFAR-10 and 0.2% on ImageNet. The memristor has many features for hardware deployment, such as memory functions, continuous input and output, nanoscale size, etc., making it an ideal device for deploying neural networks. Therefore, this paper further proposes a memristor-based KDG-BNN implementation scheme by levering the merits of memristors and the lightweight BNNs in the hope of realizing and promoting end-side intelligent applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duyuanyuan发布了新的文献求助10
刚刚
刚刚
Demon发布了新的文献求助10
1秒前
exquisite完成签到,获得积分10
2秒前
emma完成签到,获得积分10
2秒前
科目三应助温柔采纳,获得10
4秒前
feilu应助SQDHZJ采纳,获得10
5秒前
byb完成签到 ,获得积分10
5秒前
小张完成签到,获得积分10
8秒前
10秒前
yy发布了新的文献求助10
11秒前
小张完成签到 ,获得积分10
13秒前
炸鸡完成签到 ,获得积分10
14秒前
荷月初六发布了新的文献求助10
15秒前
lsl发布了新的文献求助10
17秒前
niuma应助SQDHZJ采纳,获得10
19秒前
虞无声发布了新的文献求助10
21秒前
21秒前
23秒前
njusdf完成签到,获得积分10
23秒前
wangxiu发布了新的文献求助10
26秒前
小蘑菇应助KKKkkkkk采纳,获得10
29秒前
呦呦呵呵发布了新的文献求助10
29秒前
慕冰蝶完成签到,获得积分10
29秒前
科目三应助Sheryl采纳,获得10
30秒前
学术laji发布了新的文献求助10
31秒前
cloud完成签到,获得积分10
31秒前
西溪完成签到,获得积分10
32秒前
32秒前
33秒前
omkg完成签到,获得积分10
33秒前
RDF发布了新的文献求助10
36秒前
西原的橙果完成签到,获得积分10
37秒前
小王同学完成签到,获得积分10
37秒前
杳鸢应助omkg采纳,获得10
37秒前
杜华詹发布了新的文献求助10
38秒前
38秒前
Will发布了新的文献求助10
41秒前
精明人达完成签到,获得积分10
42秒前
43秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464222
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057512
捐赠科研通 2747626
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696070