Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network

胎头 计算机科学 人工智能 卷积神经网络 深度学习 分割 人工神经网络 模式识别(心理学) 计算机视觉 怀孕 胎儿 遗传学 生物
作者
Wen Zeng,Jie Luo,Jiaru Cheng,Yiling Lu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 5081-5092 被引量:9
标识
DOI:10.1002/mp.15700
摘要

Fetal head circumference (HC) is an important biometric parameter that can be used to assess fetal development in obstetric clinical practice. Most of the existing methods use deep neural network to accomplish the task of automatic fetal HC measurement from two-dimensional ultrasound images, and some of them achieved relatively high prediction accuracy. However, few of these methods focused on optimizing model efficiency performance. Our purpose is to develop a more efficient approach for this task, which could help doctors measure HC faster and would be more suitable for deployment on devices with scarce computing resources.In this paper, we present a very lightweight deep convolutional neural network to achieve automatic fetal head segmentation from ultrasound images. By using sequential prediction network architecture, the proposed model could perform much faster inference while maintaining a high prediction accuracy. In addition, we used depthwise separable convolution to replace part of the standard convolution in the network and shrunk the input image to further improve model efficiency. After getting fetal head segmentation results, post-processing, including morphological processing and least-squares ellipse fitting, was applied to obtain the fetal HC. All experiments in this work were performed on a public dataset, HC18, with 999 fetal ultrasound images for training and 335 for testing. The dataset is publicly available on https://hc18.grand-challenge.org/ and the code for our method is also publicly available on https://github.com/ApeMocker/CSM-for-fetal-HC-measurement.Our model has only 0.13 million [M] parameters and can achieve an inference speed of 28 [ms] per frame on a CPU and 0.194 [ms] per frame on a GPU, which far exceeds all existing deep learning-based models as far as we know. Experimental results showed that the method achieved a mean absolute difference of 1.97( ± 1.89) [mm] and a Dice similarity coefficient of 97.61( ± 1.72) [%] on HC18 test set, which were comparable to the state of the art.We presented a very lightweight deep learning-based model to realize fast and accurate fetal head segmentation from two-dimensional ultrasound image, which is then used for calculating the fetal HC. The proposed method could help obstetricians measure the fetal HC more efficiently with high accuracy, and has the potential to be applied to the situations where computing resources are relatively scarce.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助牛马采纳,获得10
1秒前
苑开心发布了新的文献求助10
3秒前
Owen应助年轻板凳采纳,获得10
4秒前
gghh完成签到,获得积分10
5秒前
深情安青应助李昕123采纳,获得30
5秒前
辛勤的大雁完成签到,获得积分10
5秒前
5秒前
5秒前
半青一江完成签到 ,获得积分10
6秒前
忧郁平文发布了新的文献求助10
6秒前
科研通AI6应助Elara采纳,获得10
6秒前
17160075653发布了新的文献求助10
10秒前
goodc完成签到,获得积分10
11秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
dmoney完成签到,获得积分10
16秒前
17秒前
watermelon完成签到,获得积分10
17秒前
sanmochuan完成签到,获得积分10
17秒前
17秒前
JDD完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
jawa完成签到 ,获得积分10
18秒前
19秒前
19秒前
寻道图强应助小白采纳,获得500
20秒前
充电宝应助xsf采纳,获得10
20秒前
留胡子的藏鸟完成签到,获得积分10
21秒前
123发布了新的文献求助10
23秒前
xyx发布了新的文献求助10
23秒前
23秒前
童谣发布了新的文献求助10
23秒前
明亮冰枫应助yangcy采纳,获得20
23秒前
韶华发布了新的文献求助10
23秒前
Hanayu完成签到 ,获得积分0
24秒前
吞吞完成签到 ,获得积分10
25秒前
忆夏发布了新的文献求助200
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554346
求助须知:如何正确求助?哪些是违规求助? 4638877
关于积分的说明 14654484
捐赠科研通 4580637
什么是DOI,文献DOI怎么找? 2512417
邀请新用户注册赠送积分活动 1487207
关于科研通互助平台的介绍 1458076