Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network

胎头 计算机科学 人工智能 卷积神经网络 深度学习 分割 人工神经网络 模式识别(心理学) 计算机视觉 怀孕 胎儿 遗传学 生物
作者
Wen Zeng,Jie Luo,Jiaru Cheng,Yiling Lu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 5081-5092 被引量:9
标识
DOI:10.1002/mp.15700
摘要

Fetal head circumference (HC) is an important biometric parameter that can be used to assess fetal development in obstetric clinical practice. Most of the existing methods use deep neural network to accomplish the task of automatic fetal HC measurement from two-dimensional ultrasound images, and some of them achieved relatively high prediction accuracy. However, few of these methods focused on optimizing model efficiency performance. Our purpose is to develop a more efficient approach for this task, which could help doctors measure HC faster and would be more suitable for deployment on devices with scarce computing resources.In this paper, we present a very lightweight deep convolutional neural network to achieve automatic fetal head segmentation from ultrasound images. By using sequential prediction network architecture, the proposed model could perform much faster inference while maintaining a high prediction accuracy. In addition, we used depthwise separable convolution to replace part of the standard convolution in the network and shrunk the input image to further improve model efficiency. After getting fetal head segmentation results, post-processing, including morphological processing and least-squares ellipse fitting, was applied to obtain the fetal HC. All experiments in this work were performed on a public dataset, HC18, with 999 fetal ultrasound images for training and 335 for testing. The dataset is publicly available on https://hc18.grand-challenge.org/ and the code for our method is also publicly available on https://github.com/ApeMocker/CSM-for-fetal-HC-measurement.Our model has only 0.13 million [M] parameters and can achieve an inference speed of 28 [ms] per frame on a CPU and 0.194 [ms] per frame on a GPU, which far exceeds all existing deep learning-based models as far as we know. Experimental results showed that the method achieved a mean absolute difference of 1.97( ± 1.89) [mm] and a Dice similarity coefficient of 97.61( ± 1.72) [%] on HC18 test set, which were comparable to the state of the art.We presented a very lightweight deep learning-based model to realize fast and accurate fetal head segmentation from two-dimensional ultrasound image, which is then used for calculating the fetal HC. The proposed method could help obstetricians measure the fetal HC more efficiently with high accuracy, and has the potential to be applied to the situations where computing resources are relatively scarce.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李素丽发布了新的文献求助10
刚刚
1秒前
Lament完成签到,获得积分10
1秒前
1秒前
所所应助下雨了采纳,获得10
1秒前
温水完成签到 ,获得积分10
1秒前
着急的棉花糖完成签到,获得积分20
1秒前
Syyyy完成签到,获得积分10
2秒前
蒸馏水发布了新的文献求助10
2秒前
2秒前
3秒前
李不乐完成签到,获得积分10
3秒前
kaiyuannnnnn完成签到,获得积分10
3秒前
zhou发布了新的文献求助10
3秒前
聪明海豚发布了新的文献求助10
4秒前
liwei发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
niko发布了新的文献求助30
4秒前
deng发布了新的文献求助30
4秒前
LIYI发布了新的文献求助10
5秒前
秦艽完成签到,获得积分10
5秒前
李ny完成签到,获得积分20
6秒前
6秒前
Lucas应助8y24dp采纳,获得10
6秒前
111发布了新的文献求助10
7秒前
yqsf789发布了新的文献求助10
7秒前
Sandra完成签到 ,获得积分10
7秒前
可爱的函函应助西蜀小吏采纳,获得10
7秒前
二战老兵完成签到,获得积分10
7秒前
lllly发布了新的文献求助10
9秒前
John不想上班完成签到 ,获得积分10
9秒前
gaohui完成签到,获得积分10
9秒前
bionova发布了新的文献求助10
10秒前
小冰糖完成签到 ,获得积分10
10秒前
10秒前
灬卍冉发布了新的文献求助10
10秒前
FXY发布了新的文献求助10
11秒前
11秒前
11秒前
111完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123