Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network

胎头 计算机科学 人工智能 卷积神经网络 深度学习 分割 人工神经网络 模式识别(心理学) 计算机视觉 怀孕 胎儿 遗传学 生物
作者
Wen Zeng,Jie Luo,Jiaru Cheng,Yiling Lu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 5081-5092 被引量:9
标识
DOI:10.1002/mp.15700
摘要

Fetal head circumference (HC) is an important biometric parameter that can be used to assess fetal development in obstetric clinical practice. Most of the existing methods use deep neural network to accomplish the task of automatic fetal HC measurement from two-dimensional ultrasound images, and some of them achieved relatively high prediction accuracy. However, few of these methods focused on optimizing model efficiency performance. Our purpose is to develop a more efficient approach for this task, which could help doctors measure HC faster and would be more suitable for deployment on devices with scarce computing resources.In this paper, we present a very lightweight deep convolutional neural network to achieve automatic fetal head segmentation from ultrasound images. By using sequential prediction network architecture, the proposed model could perform much faster inference while maintaining a high prediction accuracy. In addition, we used depthwise separable convolution to replace part of the standard convolution in the network and shrunk the input image to further improve model efficiency. After getting fetal head segmentation results, post-processing, including morphological processing and least-squares ellipse fitting, was applied to obtain the fetal HC. All experiments in this work were performed on a public dataset, HC18, with 999 fetal ultrasound images for training and 335 for testing. The dataset is publicly available on https://hc18.grand-challenge.org/ and the code for our method is also publicly available on https://github.com/ApeMocker/CSM-for-fetal-HC-measurement.Our model has only 0.13 million [M] parameters and can achieve an inference speed of 28 [ms] per frame on a CPU and 0.194 [ms] per frame on a GPU, which far exceeds all existing deep learning-based models as far as we know. Experimental results showed that the method achieved a mean absolute difference of 1.97( ± 1.89) [mm] and a Dice similarity coefficient of 97.61( ± 1.72) [%] on HC18 test set, which were comparable to the state of the art.We presented a very lightweight deep learning-based model to realize fast and accurate fetal head segmentation from two-dimensional ultrasound image, which is then used for calculating the fetal HC. The proposed method could help obstetricians measure the fetal HC more efficiently with high accuracy, and has the potential to be applied to the situations where computing resources are relatively scarce.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
michael发布了新的文献求助10
1秒前
Rsoup完成签到,获得积分10
2秒前
乌拉拉拉拉完成签到,获得积分10
2秒前
赘婿应助Richard采纳,获得10
3秒前
旺旺完成签到 ,获得积分10
4秒前
5秒前
缥缈书本完成签到 ,获得积分10
5秒前
幸福台灯发布了新的文献求助10
6秒前
蟑螂恶霸完成签到,获得积分10
6秒前
7秒前
tt完成签到 ,获得积分10
8秒前
明理慕灵发布了新的文献求助10
9秒前
发如雪发布了新的文献求助10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
勤恳雅莉应助科研通管家采纳,获得20
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
给我打只山鹰吧完成签到,获得积分10
13秒前
打打应助michael采纳,获得10
13秒前
13秒前
CodeCraft应助幸福台灯采纳,获得10
14秒前
大力的问蕊完成签到,获得积分10
16秒前
nan发布了新的文献求助10
17秒前
19秒前
Xiaoxiannv发布了新的文献求助10
20秒前
DoctorXu完成签到,获得积分10
21秒前
Rsoup发布了新的文献求助30
22秒前
23秒前
火星上的刚完成签到,获得积分10
24秒前
25秒前
25秒前
景清完成签到 ,获得积分10
28秒前
幸福台灯发布了新的文献求助10
31秒前
龙龙宝宝完成签到,获得积分10
32秒前
眨眼完成签到,获得积分10
33秒前
33秒前
33秒前
roro熊发布了新的文献求助10
33秒前
younghippo发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281