Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network

胎头 计算机科学 人工智能 卷积神经网络 深度学习 分割 人工神经网络 模式识别(心理学) 计算机视觉 遗传学 生物 胎儿 怀孕
作者
Wen Zeng,Jie Luo,Jiaru Cheng,Yiling Lu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 5081-5092 被引量:9
标识
DOI:10.1002/mp.15700
摘要

Fetal head circumference (HC) is an important biometric parameter that can be used to assess fetal development in obstetric clinical practice. Most of the existing methods use deep neural network to accomplish the task of automatic fetal HC measurement from two-dimensional ultrasound images, and some of them achieved relatively high prediction accuracy. However, few of these methods focused on optimizing model efficiency performance. Our purpose is to develop a more efficient approach for this task, which could help doctors measure HC faster and would be more suitable for deployment on devices with scarce computing resources.In this paper, we present a very lightweight deep convolutional neural network to achieve automatic fetal head segmentation from ultrasound images. By using sequential prediction network architecture, the proposed model could perform much faster inference while maintaining a high prediction accuracy. In addition, we used depthwise separable convolution to replace part of the standard convolution in the network and shrunk the input image to further improve model efficiency. After getting fetal head segmentation results, post-processing, including morphological processing and least-squares ellipse fitting, was applied to obtain the fetal HC. All experiments in this work were performed on a public dataset, HC18, with 999 fetal ultrasound images for training and 335 for testing. The dataset is publicly available on https://hc18.grand-challenge.org/ and the code for our method is also publicly available on https://github.com/ApeMocker/CSM-for-fetal-HC-measurement.Our model has only 0.13 million [M] parameters and can achieve an inference speed of 28 [ms] per frame on a CPU and 0.194 [ms] per frame on a GPU, which far exceeds all existing deep learning-based models as far as we know. Experimental results showed that the method achieved a mean absolute difference of 1.97( ± 1.89) [mm] and a Dice similarity coefficient of 97.61( ± 1.72) [%] on HC18 test set, which were comparable to the state of the art.We presented a very lightweight deep learning-based model to realize fast and accurate fetal head segmentation from two-dimensional ultrasound image, which is then used for calculating the fetal HC. The proposed method could help obstetricians measure the fetal HC more efficiently with high accuracy, and has the potential to be applied to the situations where computing resources are relatively scarce.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翻车鱼完成签到,获得积分10
1秒前
酷酷依秋完成签到,获得积分10
2秒前
2秒前
kakaka发布了新的文献求助10
2秒前
赘婿应助小虫采纳,获得10
2秒前
爆米花应助小虫采纳,获得10
2秒前
鹿子默发布了新的文献求助30
3秒前
3秒前
完美世界应助甜甜的静柏采纳,获得10
3秒前
小前途完成签到,获得积分10
4秒前
goldNAN发布了新的文献求助10
4秒前
小蘑菇应助0美团外卖0采纳,获得10
5秒前
5秒前
dalong完成签到,获得积分10
5秒前
SciGPT应助绅度采纳,获得10
6秒前
精明台灯发布了新的文献求助10
6秒前
6秒前
托姆斯突发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
二十五发布了新的文献求助30
7秒前
科研通AI5应助小罗采纳,获得10
7秒前
今天也不想搬砖完成签到,获得积分10
7秒前
7秒前
依米zhang完成签到,获得积分10
8秒前
格瑞格完成签到,获得积分10
8秒前
今后应助聪明无敌小腚宝采纳,获得10
9秒前
9秒前
方黎昕发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
深呼吸完成签到,获得积分10
11秒前
小研发布了新的文献求助10
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842341
求助须知:如何正确求助?哪些是违规求助? 3384447
关于积分的说明 10534846
捐赠科研通 3104952
什么是DOI,文献DOI怎么找? 1709863
邀请新用户注册赠送积分活动 823415
科研通“疑难数据库(出版商)”最低求助积分说明 774059