Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network

胎头 计算机科学 人工智能 卷积神经网络 深度学习 分割 人工神经网络 模式识别(心理学) 计算机视觉 遗传学 生物 胎儿 怀孕
作者
Wen Zeng,Jie Luo,Jiaru Cheng,Yiling Lu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 5081-5092 被引量:9
标识
DOI:10.1002/mp.15700
摘要

Fetal head circumference (HC) is an important biometric parameter that can be used to assess fetal development in obstetric clinical practice. Most of the existing methods use deep neural network to accomplish the task of automatic fetal HC measurement from two-dimensional ultrasound images, and some of them achieved relatively high prediction accuracy. However, few of these methods focused on optimizing model efficiency performance. Our purpose is to develop a more efficient approach for this task, which could help doctors measure HC faster and would be more suitable for deployment on devices with scarce computing resources.In this paper, we present a very lightweight deep convolutional neural network to achieve automatic fetal head segmentation from ultrasound images. By using sequential prediction network architecture, the proposed model could perform much faster inference while maintaining a high prediction accuracy. In addition, we used depthwise separable convolution to replace part of the standard convolution in the network and shrunk the input image to further improve model efficiency. After getting fetal head segmentation results, post-processing, including morphological processing and least-squares ellipse fitting, was applied to obtain the fetal HC. All experiments in this work were performed on a public dataset, HC18, with 999 fetal ultrasound images for training and 335 for testing. The dataset is publicly available on https://hc18.grand-challenge.org/ and the code for our method is also publicly available on https://github.com/ApeMocker/CSM-for-fetal-HC-measurement.Our model has only 0.13 million [M] parameters and can achieve an inference speed of 28 [ms] per frame on a CPU and 0.194 [ms] per frame on a GPU, which far exceeds all existing deep learning-based models as far as we know. Experimental results showed that the method achieved a mean absolute difference of 1.97( ± 1.89) [mm] and a Dice similarity coefficient of 97.61( ± 1.72) [%] on HC18 test set, which were comparable to the state of the art.We presented a very lightweight deep learning-based model to realize fast and accurate fetal head segmentation from two-dimensional ultrasound image, which is then used for calculating the fetal HC. The proposed method could help obstetricians measure the fetal HC more efficiently with high accuracy, and has the potential to be applied to the situations where computing resources are relatively scarce.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCL应助wjj采纳,获得20
1秒前
1秒前
单于天宇完成签到,获得积分10
1秒前
1秒前
畅快的南风完成签到,获得积分10
2秒前
猪猪hero完成签到,获得积分10
2秒前
要减肥冰菱完成签到,获得积分10
2秒前
肖静茹完成签到,获得积分20
2秒前
情怀应助啾啾咪咪采纳,获得10
3秒前
奥里给完成签到 ,获得积分10
3秒前
DQ8733完成签到,获得积分10
3秒前
AAAAAAAAAAA发布了新的文献求助10
4秒前
4秒前
鱼与树发布了新的文献求助10
4秒前
sun完成签到,获得积分20
4秒前
lbw完成签到 ,获得积分10
5秒前
领导范儿应助朴素篮球采纳,获得10
5秒前
小刘不笨发布了新的文献求助10
5秒前
5秒前
大方的雪曼完成签到,获得积分10
5秒前
詭詐应助西洲采纳,获得10
5秒前
6秒前
zhangting发布了新的文献求助10
6秒前
玉9989完成签到,获得积分20
6秒前
大方小白发布了新的文献求助10
6秒前
xiaowang完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
轩辕德地发布了新的文献求助10
7秒前
FashionBoy应助chinning采纳,获得10
7秒前
shaohua2011完成签到,获得积分10
7秒前
快乐小白菜应助velpro采纳,获得10
7秒前
舒服的井完成签到,获得积分10
8秒前
脑洞疼应助要减肥冰菱采纳,获得10
8秒前
MADKAI发布了新的文献求助10
8秒前
言余完成签到,获得积分10
8秒前
9秒前
寒冷荧荧完成签到,获得积分10
9秒前
Agernon应助细腻白柏采纳,获得10
9秒前
搞怪的人龙完成签到,获得积分10
10秒前
稚初完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678