已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRCON-Net: Multiscale Reweighted Convolutional Coding Neural Network for Low-Dose CT Imaging

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 深度学习 神经编码 可解释性 源代码
作者
Jin Liu,Yanqin Kang,Zhenyu Xia,Jun Qiang,JunFeng Zhang,Yikun Zhang,Chen Yang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:: 106851-106851
标识
DOI:10.1016/j.cmpb.2022.106851
摘要

Low-dose computed tomography (LDCT) has become increasingly important for alleviating X-ray radiation damage. However, reducing the administered radiation dose may lead to degraded CT images with amplified mottle noise and nonstationary streak artifacts. Previous studies have confirmed that deep learning (DL) is promising for improving LDCT imaging. However, most DL-based frameworks are built intuitively, lack interpretability, and suffer from image detail information loss, which has become a general challenging issue.A multiscale reweighted convolutional coding neural network (MRCON-Net) is developed to address the above problems. MRCON-Net is compact and more explainable than other networks. First, inspired by the learning-based reweighted iterative soft thresholding algorithm (ISTA), we extend traditional convolutional sparse coding (CSC) to its reweighted convolutional learning form. Second, we use dilated convolution to extract multiscale image features, allowing our single model to capture the correlations between features of different scales. Finally, to automatically adjust the elements in the feature code to correct the obtained solution, a channel attention (CA) mechanism is utilized to learn appropriate weights.The visual results obtained based on the American Association of Physicians in Medicine (AAPM) Challenge and United Image Healthcare (UIH) clinical datasets confirm that the proposed model significantly reduces serious artifact noise while retaining the desired structures. Quantitative results show that the average structural similarity index measurement (SSIM) and peak signal-to-noise ratio (PSNR) achieved on the AAPM Challenge dataset are 0.9491 and 40.66, respectively, and the SSIM and PSNR achieved on the UIH clinical dataset are 0.915 and 42.44, respectively; these are promising quantitative results.Compared with recent state-of-the-art methods, the proposed model achieves subtle structure-enhanced LDCT imaging. In addition, through ablation studies, the components of the proposed model are validated to achieve performance improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的老虎完成签到,获得积分10
2秒前
月月鸟发布了新的文献求助10
4秒前
5秒前
123完成签到 ,获得积分10
5秒前
科研韭菜发布了新的文献求助10
5秒前
Zayne应助苏乘风采纳,获得10
6秒前
与月同行完成签到,获得积分10
7秒前
机灵自中完成签到,获得积分10
7秒前
10秒前
13508104971发布了新的文献求助10
10秒前
11秒前
酒剑仙完成签到,获得积分10
14秒前
14秒前
小胡发布了新的文献求助10
15秒前
15秒前
duobao鱼发布了新的文献求助10
15秒前
繁荣的从灵完成签到,获得积分10
16秒前
张维发布了新的文献求助10
19秒前
FleeToMars完成签到 ,获得积分10
20秒前
Ben发布了新的文献求助10
20秒前
ahan完成签到,获得积分10
20秒前
H1lb2rt完成签到 ,获得积分10
22秒前
窝恁叠发布了新的文献求助10
23秒前
eric888应助萧水白采纳,获得100
23秒前
深海soda完成签到,获得积分10
24秒前
29秒前
米米米完成签到 ,获得积分20
29秒前
FIN应助科研通管家采纳,获得30
32秒前
爆米花应助科研通管家采纳,获得10
32秒前
allshestar完成签到 ,获得积分0
32秒前
sun发布了新的文献求助10
34秒前
白菜包子完成签到 ,获得积分10
34秒前
香蕉觅云应助今夕何夕采纳,获得10
34秒前
38秒前
听风者完成签到 ,获得积分10
39秒前
summer木发布了新的文献求助10
40秒前
sun发布了新的文献求助30
42秒前
42秒前
43秒前
董蓝天完成签到 ,获得积分10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959920
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128046
捐赠科研通 3238071
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021