已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRCON-Net: Multiscale Reweighted Convolutional Coding Neural Network for Low-Dose CT Imaging

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 深度学习 神经编码 可解释性 源代码
作者
Jin Liu,Yanqin Kang,Zhenyu Xia,Jun Qiang,JunFeng Zhang,Yikun Zhang,Chen Yang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:: 106851-106851
标识
DOI:10.1016/j.cmpb.2022.106851
摘要

Low-dose computed tomography (LDCT) has become increasingly important for alleviating X-ray radiation damage. However, reducing the administered radiation dose may lead to degraded CT images with amplified mottle noise and nonstationary streak artifacts. Previous studies have confirmed that deep learning (DL) is promising for improving LDCT imaging. However, most DL-based frameworks are built intuitively, lack interpretability, and suffer from image detail information loss, which has become a general challenging issue.A multiscale reweighted convolutional coding neural network (MRCON-Net) is developed to address the above problems. MRCON-Net is compact and more explainable than other networks. First, inspired by the learning-based reweighted iterative soft thresholding algorithm (ISTA), we extend traditional convolutional sparse coding (CSC) to its reweighted convolutional learning form. Second, we use dilated convolution to extract multiscale image features, allowing our single model to capture the correlations between features of different scales. Finally, to automatically adjust the elements in the feature code to correct the obtained solution, a channel attention (CA) mechanism is utilized to learn appropriate weights.The visual results obtained based on the American Association of Physicians in Medicine (AAPM) Challenge and United Image Healthcare (UIH) clinical datasets confirm that the proposed model significantly reduces serious artifact noise while retaining the desired structures. Quantitative results show that the average structural similarity index measurement (SSIM) and peak signal-to-noise ratio (PSNR) achieved on the AAPM Challenge dataset are 0.9491 and 40.66, respectively, and the SSIM and PSNR achieved on the UIH clinical dataset are 0.915 and 42.44, respectively; these are promising quantitative results.Compared with recent state-of-the-art methods, the proposed model achieves subtle structure-enhanced LDCT imaging. In addition, through ablation studies, the components of the proposed model are validated to achieve performance improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的小土豆完成签到,获得积分10
刚刚
刚刚
iris发布了新的文献求助10
刚刚
2秒前
4秒前
NexusExplorer应助LamJohn采纳,获得10
5秒前
郑志凡完成签到 ,获得积分10
5秒前
6秒前
DDDDDesmend发布了新的文献求助10
6秒前
烟花应助月不笑采纳,获得10
7秒前
qiao发布了新的文献求助10
11秒前
深情安青应助聪慧的从雪采纳,获得10
11秒前
小二郎应助GWS采纳,获得10
14秒前
zhan20200503发布了新的文献求助20
15秒前
15秒前
16秒前
11234完成签到 ,获得积分10
17秒前
好好好1234完成签到,获得积分10
18秒前
传奇3应助高挑的天寿采纳,获得10
20秒前
20秒前
月不笑发布了新的文献求助10
21秒前
11234发布了新的文献求助10
21秒前
天天快乐应助sunshine采纳,获得10
22秒前
大观天下发布了新的文献求助10
22秒前
23秒前
腌黄瓜女士完成签到 ,获得积分10
23秒前
小正完成签到,获得积分10
23秒前
Orange应助普鲁卡因采纳,获得20
25秒前
不安毛豆发布了新的文献求助10
26秒前
李家静完成签到 ,获得积分10
27秒前
巫马垣发布了新的文献求助10
27秒前
虚心千凡发布了新的文献求助10
29秒前
Orange应助不安毛豆采纳,获得10
32秒前
李昊泽完成签到,获得积分10
34秒前
34秒前
36秒前
科研老王完成签到,获得积分10
37秒前
xubee完成签到,获得积分10
38秒前
39秒前
脑洞疼应助不安毛豆采纳,获得10
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271274
求助须知:如何正确求助?哪些是违规求助? 2910470
关于积分的说明 8354583
捐赠科研通 2580929
什么是DOI,文献DOI怎么找? 1403911
科研通“疑难数据库(出版商)”最低求助积分说明 656033
邀请新用户注册赠送积分活动 635466