Nitride Semiconductor Devices: Principles and Simulation
材料科学
半导体
计算机科学
光电子学
作者
Joachim Piprek
出处
期刊:Wiley eBooks [Wiley] 日期:2007-01-26被引量:506
标识
DOI:10.1002/9783527610723
摘要
Preface. List of Contributors. Part 1 Material Properties. 1 Introduction (Joachim Piprek). 1.1 A Brief History. 1.2 Unique Material Properties. 1.3 Thermal Parameters. References. 2 Electron Bandstructure Parameters (Igor Vurgaftman and Jerry R. Meyer). 2.1 Introduction. 2.2 Band Structure Models. 2.3 Band Parameters. 2.4 Conclusions. References. 3 Spontaneous and Piezoelectric Polarization: Basic Theory vs. Practical Recipes (Fabio Bernardini). 3.1 Why Spontaneous Polarization in III-V Nitrides? 3.2 Theoretical Prediction of Polarization Properties in AlN, GaN and InN. 3.3 Piezoelectric and Pyroelectric Effects in III-V Nitrides Nanostructures. 3.4 Polarization Properties in Ternary and Quaternary Alloys. 3.5 Orientational Dependence of Polarization. References. 4 Transport Parameters for Electrons and Holes (Enrico Bellotti and Francesco Bertazzi). 4.1 Introduction. 4.2 Numerical Simulation Model. 4.3 Analytical Models for the Transport Parameters. 4.4 GaN Transport Parameters. 4.5 AlN Transport Parameters. 4.6 InN Transport Parameters. 4.7 Conclusions. References. 5 Optical Constants of Bulk Nitrides (Rudiger Goldhahn, Carsten Buchheim, Pascal Schley, Andreas Theo Winzer, and Hans Wenzel). 5.1 Introduction. 5.2 Dielectric Function and Band Structure. 5.3 Experimental Results. 5.4 Modeling of the Dielectric Function. References. 6 Intersubband Absorption in AlGaN/GaN Quantum Wells (Sulakshana Gunna, Francesco Bertazzi, Roberto Paiella, and Enrico Bellotti). 6.1 Introduction. 6.2 Theoretical Model. 6.3 Numerical Implementation. 6.4 Absorption Energy in AlGaN-GaN MQWs. 6.5 Conclusions. References. 7 Interband Transitions in InGaN Quantum Wells (Jorg Hader, Jerome V. Moloney, Angela Thranhardt, and Stephan W. Koch). 7.1 Introduction. 7.2 Theory. 7.3 Theory-Experiment Gain Comparison. 7.4 Absorption/Gain. 7.5 Spontaneous Emission. 7.6 Auger Recombinations. 7.7 Internal Field Effects. 7.8 Summary. References. 8 Electronic and Optical Properties of GaN-based Quantum Wells with (1010) Crystal Orientation (Seoung-Hwan Park and Shun-Lien Chuang). 8.1 Introduction. 8.2 Theory. 8.2.1 Non-Markovian gain model with many-body effects. 8.3 Results and Discussion. 8.4 Summary. References. 9 Carrier Scattering in Quantum-Dot Systems (Frank Jahnke). 9.1 Introduction. 9.2 Scattering Due to Carrier-Carrier Coulomb Interaction. 9.3 Scattering Due to Carrier-Phonon Interaction. 9.4 Summary and Outlook. References. Part 2 Devices. 10 AlGaN/GaN High Electron Mobility Transistors (Tomas Palacios and Umesh K. Mishra). 10.1 Introduction. 10.2 Physics-based Simulations. 10.3 Conclusions. References. 11 Intersubband Optical Switches for Optical Communications (Nobuo Suzuki). 11.1 Introduction. 11.2 Physics of ISBT in Nitride MQWs. 11.3 Calculation of Absorption Spectra. 11.4 FDTD Simulator for GaN/AlGaN ISBT Switches. References. 12 Intersubband Electroabsorption Modulator (Petter Holmstrom). 12.1 Introduction. 12.2 Modulator Structure. 12.3 Model. 12.4 Results. 12.5 Summary. References. 13 Ultraviolet Light-Emitting Diodes (Yen-Kuang Kuo, Sheng-Horng Yen, and Jun-Rong Chen). 13.1 Introduction. 13.2 Device Structure. 13.3 Physical Models and Parameters. 13.4 Comparison Between Simulated and Experimental Results. 13.5 Performance Optimization. 13.6 Conclusion. References. 14 Visible Light-Emitting Diodes (Sergey Yu. Karpov). 14.1 Introduction. 14.2 Simulation Approach and Materials Properties. 14.3 Device Analysis. 14.4 Novel LED Structures. 14.5 Conclusion. References. 15 Simulation of LEDs with Phosphorescent Media for the Generation of White Light (Norbert Linder, Dominik Eisert, Frank Jermann, and Dirk Berben). 15.1 Introduction. 15.2 Requirements for a Conversion LED Model. 15.3 Color Metrics for Conversion LEDs. 15.4 Phosphor Model. 15.5 Simulation Examples. 15.6 Conclusions. References. 16 Fundamental Characteristics of Edge-Emitting Lasers (Gen-ichi Hatakoshi). 16.1 Introduction. 16.2 Basic Equations for the Device Simulation. 16.3 Simulation for Electrical Characteristics and Carrier Overflow Analysis. 16.4 Perpendicular TransverseMode and Beam Quality Analysis. 16.5 Thermal Analysis. 16.6 Conclusions. References. 17 Resonant Internal Transverse-Mode Coupling in InGaN/GaN/AlGaN Lasers (Gennady A. Smolyakov and Marek Osinski). 17.1 Introduction. 17.2 Internal Mode Coupling and the Concept of Ghost 17.3 Device Structure and Material Parameters. 17.4 Calculation Technique. 17.5 Results of Calculations. 17.6 Discussion and Conclusions. References. 18 Optical Properties of Edge-Emitting Lasers: Measurement and Simulation (Ulrich T. Schwarz and Bernd Witzigmann). 18.1 Introduction. 18.2 Waveguide Mode Stability. 18.3 Optical Waveguide Loss. 18.4 Mode Gain Analysis. 18.5 Conclusion. References. 19 Electronic Properties of InGaN/GaN Vertical-Cavity Lasers (Joachim Piprek, Zhan-Ming Li, Robert Farrell, Steven P. DenBaars, and Shuji Nakamura). 19.1 Introduction to Vertical-Cavity Lasers. 19.2 GaN-based VCSEL Structure. 19.3 Theoretical Models and Material Parameters. 19.4 Simulation Results and Device Analysis. 19.5 Summary. References. 20 Optical Design of Vertical-Cavity Lasers (Wlodzimierz Nakwaski, Tomasz Czyszanowski, and Robert P. Sarzala). 20.1 Introduction. 20.2 The GaN VCSEL Structure. 20.3 The Scalar Optical Approach. 20.4 The Vectorial Optical Approach. 20.5 The Self-consistent Calculation Algorithm. 20.6 Simulation Results. 20.7 Discussion and Conclusions. References. 21 GaN Nanowire Lasers (Alexey V. Maslov and Cun-Zheng Ning). 21.1 Introduction. 21.2 Nanowire Growth and Characterization. 21.3 Nanowire Laser Principles. 21.4 Anisotropy of Material Gain. 21.5 Guided Modes. 21.6 Modal Gain and Threshold. 21.7 Conclusion. References. Index.