已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-Speed Tracking with Kernelized Correlation Filters

计算机科学 人工智能 循环矩阵 判别式 模式识别(心理学) 核方法 核(代数) 数学 算法 BitTorrent跟踪器 支持向量机 眼动 组合数学
作者
João F. Henriques,Rui Caseiro,Pedro Martins,Jorge Batista
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:37 (3): 583-596 被引量:4572
标识
DOI:10.1109/tpami.2014.2345390
摘要

The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies-any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new kernelized correlation filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter (DCF). Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
十二应助lf采纳,获得10
2秒前
萧水白发布了新的文献求助10
3秒前
tdtk发布了新的文献求助30
4秒前
小枫沂岁发布了新的文献求助20
4秒前
所所应助西河采纳,获得10
5秒前
5秒前
如意花卷发布了新的文献求助10
7秒前
7秒前
俊逸海豚发布了新的文献求助10
8秒前
10秒前
wan完成签到,获得积分10
10秒前
Zyl完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
Jqq关闭了Jqq文献求助
13秒前
LLxiaolong完成签到,获得积分10
13秒前
14秒前
清欢发布了新的文献求助10
14秒前
hh发布了新的文献求助10
15秒前
19秒前
19秒前
20秒前
21秒前
bkagyin应助完美的流沙采纳,获得10
21秒前
情怀应助逺山長采纳,获得10
21秒前
22秒前
小春卷发布了新的文献求助10
25秒前
tdtk发布了新的文献求助10
26秒前
26秒前
26秒前
安详砖家发布了新的文献求助10
26秒前
医学小萌新完成签到,获得积分10
26秒前
斯文败类应助学海行舟采纳,获得10
27秒前
Estella完成签到 ,获得积分10
27秒前
文献通完成签到 ,获得积分10
28秒前
白色梨花发布了新的文献求助10
29秒前
yuke发布了新的文献求助10
29秒前
小枫沂岁完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953276
求助须知:如何正确求助?哪些是违规求助? 3498602
关于积分的说明 11092546
捐赠科研通 3229175
什么是DOI,文献DOI怎么找? 1785223
邀请新用户注册赠送积分活动 869318
科研通“疑难数据库(出版商)”最低求助积分说明 801415