已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-Speed Tracking with Kernelized Correlation Filters

计算机科学 人工智能 循环矩阵 判别式 模式识别(心理学) 核方法 核(代数) 数学 算法 BitTorrent跟踪器 支持向量机 眼动 组合数学
作者
João F. Henriques,Rui Caseiro,Pedro Martins,Jorge Batista
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:37 (3): 583-596 被引量:4572
标识
DOI:10.1109/tpami.2014.2345390
摘要

The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies-any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new kernelized correlation filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter (DCF). Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小羊先生完成签到 ,获得积分10
1秒前
1秒前
快乐雅青完成签到,获得积分10
1秒前
赘婿应助千纸鹤采纳,获得10
1秒前
AAA111122发布了新的文献求助10
4秒前
囿于昼夜发布了新的文献求助10
5秒前
桥豆麻袋完成签到,获得积分10
8秒前
chy完成签到,获得积分10
9秒前
13秒前
cheng zou完成签到,获得积分10
16秒前
好了没了发布了新的文献求助10
16秒前
清新的芷完成签到 ,获得积分10
17秒前
20秒前
21秒前
徐继军完成签到 ,获得积分10
22秒前
快乐星球完成签到 ,获得积分10
23秒前
24秒前
xiaogui发布了新的文献求助10
24秒前
光撒盐完成签到,获得积分10
24秒前
如是空者完成签到 ,获得积分10
26秒前
32秒前
33秒前
wl完成签到,获得积分10
33秒前
33秒前
34秒前
34秒前
所所应助科研通管家采纳,获得10
34秒前
Owen应助科研通管家采纳,获得10
34秒前
pluto应助xiaogui采纳,获得10
34秒前
英姑应助科研通管家采纳,获得10
34秒前
34秒前
完美世界应助科研通管家采纳,获得10
35秒前
深情安青应助科研通管家采纳,获得10
35秒前
CipherSage应助科研通管家采纳,获得10
35秒前
华仔应助科研通管家采纳,获得10
35秒前
圆滚滚完成签到,获得积分10
36秒前
磨磨唧唧应助风趣的靖荷采纳,获得10
37秒前
yf发布了新的文献求助10
37秒前
wangjiajia123完成签到,获得积分10
38秒前
LSS发布了新的文献求助10
38秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234409
求助须知:如何正确求助?哪些是违规求助? 2880758
关于积分的说明 8216901
捐赠科研通 2548341
什么是DOI,文献DOI怎么找? 1377698
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623304