High-Speed Tracking with Kernelized Correlation Filters

计算机科学 人工智能 循环矩阵 判别式 模式识别(心理学) 核方法 核(代数) 数学 算法 BitTorrent跟踪器 支持向量机 眼动 组合数学
作者
João F. Henriques,Rui Caseiro,Pedro Martins,Jorge Batista
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:37 (3): 583-596 被引量:4572
标识
DOI:10.1109/tpami.2014.2345390
摘要

The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies-any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new kernelized correlation filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter (DCF). Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
笔记本应助陆启明采纳,获得150
1秒前
小菜鸡完成签到,获得积分10
1秒前
1秒前
老实的唇膏完成签到,获得积分20
1秒前
地表最强青铜五完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
tyz完成签到,获得积分10
2秒前
向南完成签到 ,获得积分20
3秒前
4秒前
朱元璋发布了新的文献求助30
4秒前
小马甲应助乐观的西装采纳,获得30
4秒前
4秒前
4秒前
4秒前
超人完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
暖暖发布了新的文献求助10
5秒前
快乐小海带完成签到,获得积分10
6秒前
上官若男应助JingY采纳,获得10
6秒前
小确幸完成签到,获得积分10
6秒前
醉林完成签到 ,获得积分10
6秒前
无极微光应助研狗采纳,获得20
7秒前
7秒前
8秒前
orixero应助眯眯眼的篮球采纳,获得10
8秒前
Kem发布了新的文献求助10
8秒前
安逸完成签到 ,获得积分10
9秒前
cuberblue发布了新的文献求助10
9秒前
assid发布了新的文献求助10
9秒前
9秒前
xinxin0902应助xinyu采纳,获得20
9秒前
范良聪发布了新的文献求助20
10秒前
红豆高发布了新的文献求助10
10秒前
GJJ发布了新的文献求助20
10秒前
10秒前
科研通AI6应助柠檬火兔采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505946
求助须知:如何正确求助?哪些是违规求助? 4601465
关于积分的说明 14476523
捐赠科研通 4535397
什么是DOI,文献DOI怎么找? 2485351
邀请新用户注册赠送积分活动 1468337
关于科研通互助平台的介绍 1440869