亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-Speed Tracking with Kernelized Correlation Filters

计算机科学 人工智能 循环矩阵 判别式 模式识别(心理学) 核方法 核(代数) 数学 算法 BitTorrent跟踪器 支持向量机 眼动 组合数学
作者
João F. Henriques,Rui Caseiro,Pedro Martins,Jorge Batista
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:37 (3): 583-596 被引量:4572
标识
DOI:10.1109/tpami.2014.2345390
摘要

The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies-any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new kernelized correlation filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter (DCF). Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助可爱丹彤采纳,获得10
11秒前
柚又完成签到 ,获得积分10
28秒前
韩雨桐完成签到 ,获得积分10
34秒前
35秒前
36秒前
Gabriel发布了新的文献求助10
40秒前
852应助可爱丹彤采纳,获得10
42秒前
42秒前
47秒前
深情安青应助可爱丹彤采纳,获得10
57秒前
58秒前
领导范儿应助Gabriel采纳,获得10
1分钟前
xiaoxiao发布了新的文献求助10
1分钟前
华仔应助可爱丹彤采纳,获得10
1分钟前
沐沐完成签到,获得积分20
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Tales完成签到 ,获得积分10
1分钟前
沉静的碧琴完成签到 ,获得积分10
1分钟前
caca完成签到,获得积分0
1分钟前
2分钟前
2分钟前
2分钟前
QQ发布了新的文献求助10
2分钟前
暗号完成签到 ,获得积分0
2分钟前
w123发布了新的文献求助10
2分钟前
天选小牛马完成签到 ,获得积分10
2分钟前
w123完成签到,获得积分10
2分钟前
zwb完成签到 ,获得积分10
2分钟前
SciGPT应助可爱丹彤采纳,获得10
2分钟前
Doctor.TANG完成签到 ,获得积分10
2分钟前
祁言完成签到 ,获得积分10
2分钟前
2分钟前
zqq完成签到,获得积分0
2分钟前
QQ完成签到,获得积分20
3分钟前
3分钟前
团子发布了新的文献求助10
3分钟前
CodeCraft应助可爱丹彤采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302244
求助须知:如何正确求助?哪些是违规求助? 4449478
关于积分的说明 13848401
捐赠科研通 4335641
什么是DOI,文献DOI怎么找? 2380481
邀请新用户注册赠送积分活动 1375461
关于科研通互助平台的介绍 1341639