亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On Evaluating Information Revelation Policies in Procurement Auctions: A Markov Decision Process Approach

投标 竞争对手分析 私人信息检索 微观经济学 采购 共同价值拍卖 会话(web分析) 完整信息 业务 经济 产业组织 计算机科学 营销 计算机安全 广告
作者
Amy Greenwald,Karthik Kannan,Ramayya Krishnan
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:21 (1): 15-36 被引量:45
标识
DOI:10.1287/isre.1080.0168
摘要

Each market session in a reverse electronic marketplace features a procurer and many suppliers. An important attribute of a market session chosen by the procurer is its information revelation policy. The revelation policy determines the information (such as the number of competitors, the winning bids, etc.) that will be revealed to participating suppliers at the conclusion of each market session. Suppliers participating in multiple market sessions use strategic bidding and fake their own cost structure to obtain information revealed at the end of each market session. The information helps to reduce two types of uncertainties encountered in future market sessions, namely, their opponents' cost structure and an estimate of the number of their competitors. Whereas the first type of uncertainty is present in physical and e-marketplaces, the second type of uncertainty naturally arises in IT-enabled marketplaces. Through their effect on the uncertainty faced by suppliers, information revelation policies influence the bidding behavior of suppliers which, in turn, determines the expected price paid by the procurer. Therefore, the choice of information revelation policy has important consequences for the procurer. This paper develops a partially observable Markov decision process model of supplier bidding behavior and uses a multiagent e-marketplace simulation to analyze the effect that two commonly used information revelation policies—complete information policy and incomplete information policy—have on the expected price paid by the procurer. We find that the expected price under the complete information policy is lower than that under the incomplete information policy. The integration of ideas from the multiagents literature, the machine-learning literature, and the economics literature to develop a method to evaluate information revelation policies in e-marketplaces is a novel feature of this paper.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
42秒前
46秒前
49秒前
52秒前
chenlc971125完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
loitinsuen完成签到,获得积分10
1分钟前
1分钟前
在水一方应助me采纳,获得10
1分钟前
1分钟前
1分钟前
默默的板栗完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
外向的妍完成签到,获得积分10
1分钟前
走啊走应助绝世高手采纳,获得30
2分钟前
雪白的听寒完成签到 ,获得积分10
2分钟前
慕青应助简单的凡儿采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
曦耀发布了新的文献求助20
3分钟前
黄嘉慧完成签到 ,获得积分10
4分钟前
MGraceLi_sci完成签到,获得积分10
4分钟前
所所应助zhanghua采纳,获得10
4分钟前
4分钟前
兆兆完成签到 ,获得积分10
4分钟前
zhanghua发布了新的文献求助10
4分钟前
4分钟前
小马甲应助dddhhhqqq采纳,获得10
4分钟前
zhanghua完成签到,获得积分10
4分钟前
5分钟前
Yuan完成签到,获得积分10
5分钟前
sci发布了新的文献求助10
5分钟前
虚心涵山完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534236
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582465
捐赠科研通 4562539
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450924