On Evaluating Information Revelation Policies in Procurement Auctions: A Markov Decision Process Approach

投标 竞争对手分析 私人信息检索 微观经济学 采购 共同价值拍卖 会话(web分析) 完整信息 业务 经济 产业组织 计算机科学 营销 计算机安全 广告
作者
Amy Greenwald,Karthik Kannan,Ramayya Krishnan
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:21 (1): 15-36 被引量:45
标识
DOI:10.1287/isre.1080.0168
摘要

Each market session in a reverse electronic marketplace features a procurer and many suppliers. An important attribute of a market session chosen by the procurer is its information revelation policy. The revelation policy determines the information (such as the number of competitors, the winning bids, etc.) that will be revealed to participating suppliers at the conclusion of each market session. Suppliers participating in multiple market sessions use strategic bidding and fake their own cost structure to obtain information revealed at the end of each market session. The information helps to reduce two types of uncertainties encountered in future market sessions, namely, their opponents' cost structure and an estimate of the number of their competitors. Whereas the first type of uncertainty is present in physical and e-marketplaces, the second type of uncertainty naturally arises in IT-enabled marketplaces. Through their effect on the uncertainty faced by suppliers, information revelation policies influence the bidding behavior of suppliers which, in turn, determines the expected price paid by the procurer. Therefore, the choice of information revelation policy has important consequences for the procurer. This paper develops a partially observable Markov decision process model of supplier bidding behavior and uses a multiagent e-marketplace simulation to analyze the effect that two commonly used information revelation policies—complete information policy and incomplete information policy—have on the expected price paid by the procurer. We find that the expected price under the complete information policy is lower than that under the incomplete information policy. The integration of ideas from the multiagents literature, the machine-learning literature, and the economics literature to develop a method to evaluate information revelation policies in e-marketplaces is a novel feature of this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
emoji发布了新的文献求助10
刚刚
风清扬发布了新的文献求助30
1秒前
小六子发布了新的文献求助10
1秒前
2秒前
小苏打发布了新的文献求助10
2秒前
2秒前
李健应助佐zzz采纳,获得30
3秒前
许多年以后完成签到,获得积分10
4秒前
4秒前
清脆幻枫发布了新的文献求助10
5秒前
Owen应助波波采纳,获得10
5秒前
5秒前
6秒前
FashionBoy应助believe采纳,获得10
6秒前
丘比特应助卡尔采纳,获得10
6秒前
万诚信发布了新的文献求助10
6秒前
7秒前
Ava应助露似珍珠月似弓采纳,获得10
7秒前
7秒前
科研小白发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
哆啦的空间站应助gao采纳,获得10
9秒前
粗心的电源完成签到,获得积分10
9秒前
10秒前
guo发布了新的文献求助10
10秒前
桐桐应助想人陪采纳,获得10
11秒前
11秒前
思源应助看文献了采纳,获得10
11秒前
13秒前
大牛关注了科研通微信公众号
13秒前
bkagyin应助快来看文献采纳,获得10
13秒前
kk发布了新的文献求助10
13秒前
暴躁的梦发布了新的文献求助10
14秒前
wll完成签到,获得积分20
14秒前
14秒前
vikoel完成签到,获得积分10
14秒前
善学以致用应助霸霸采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003579
求助须知:如何正确求助?哪些是违规求助? 4248189
关于积分的说明 13235662
捐赠科研通 4047228
什么是DOI,文献DOI怎么找? 2214242
邀请新用户注册赠送积分活动 1224324
关于科研通互助平台的介绍 1144641