On Evaluating Information Revelation Policies in Procurement Auctions: A Markov Decision Process Approach

投标 竞争对手分析 私人信息检索 微观经济学 采购 共同价值拍卖 会话(web分析) 完整信息 业务 经济 产业组织 计算机科学 营销 计算机安全 广告
作者
Amy Greenwald,Karthik Kannan,Ramayya Krishnan
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:21 (1): 15-36 被引量:45
标识
DOI:10.1287/isre.1080.0168
摘要

Each market session in a reverse electronic marketplace features a procurer and many suppliers. An important attribute of a market session chosen by the procurer is its information revelation policy. The revelation policy determines the information (such as the number of competitors, the winning bids, etc.) that will be revealed to participating suppliers at the conclusion of each market session. Suppliers participating in multiple market sessions use strategic bidding and fake their own cost structure to obtain information revealed at the end of each market session. The information helps to reduce two types of uncertainties encountered in future market sessions, namely, their opponents' cost structure and an estimate of the number of their competitors. Whereas the first type of uncertainty is present in physical and e-marketplaces, the second type of uncertainty naturally arises in IT-enabled marketplaces. Through their effect on the uncertainty faced by suppliers, information revelation policies influence the bidding behavior of suppliers which, in turn, determines the expected price paid by the procurer. Therefore, the choice of information revelation policy has important consequences for the procurer. This paper develops a partially observable Markov decision process model of supplier bidding behavior and uses a multiagent e-marketplace simulation to analyze the effect that two commonly used information revelation policies—complete information policy and incomplete information policy—have on the expected price paid by the procurer. We find that the expected price under the complete information policy is lower than that under the incomplete information policy. The integration of ideas from the multiagents literature, the machine-learning literature, and the economics literature to develop a method to evaluate information revelation policies in e-marketplaces is a novel feature of this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖完成签到,获得积分10
刚刚
日月轮回完成签到,获得积分10
1秒前
1秒前
dlm完成签到,获得积分10
1秒前
wyy发布了新的文献求助20
2秒前
2秒前
3秒前
4秒前
4秒前
5秒前
5秒前
大个应助bear采纳,获得10
6秒前
chloe发布了新的文献求助20
7秒前
cctv18应助tao ism采纳,获得30
8秒前
8秒前
雪魔发布了新的文献求助30
8秒前
liuqin2313发布了新的文献求助10
9秒前
欧皇发布了新的文献求助10
9秒前
hihi发布了新的文献求助10
9秒前
领导范儿应助可爱邓邓采纳,获得10
9秒前
10秒前
WWZhou关注了科研通微信公众号
10秒前
鲸鱼打滚应助Felix采纳,获得10
11秒前
堵门洞完成签到,获得积分10
11秒前
BioRick发布了新的文献求助10
13秒前
聆星眠关注了科研通微信公众号
13秒前
14秒前
14秒前
剑影完成签到,获得积分10
14秒前
zuanyhou应助panda采纳,获得10
15秒前
wwss完成签到,获得积分10
16秒前
草莓熊完成签到,获得积分10
16秒前
maox1aoxin应助史娣采纳,获得30
19秒前
elsazhou发布了新的文献求助10
19秒前
Lucas应助MJX采纳,获得10
19秒前
青花完成签到 ,获得积分10
20秒前
上官发布了新的文献求助10
22秒前
丘比特应助可爱邓邓采纳,获得10
22秒前
Hello应助cfsyyfujia采纳,获得10
22秒前
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247541
求助须知:如何正确求助?哪些是违规求助? 2890899
关于积分的说明 8264908
捐赠科研通 2559161
什么是DOI,文献DOI怎么找? 1387839
科研通“疑难数据库(出版商)”最低求助积分说明 650658
邀请新用户注册赠送积分活动 627438