On Evaluating Information Revelation Policies in Procurement Auctions: A Markov Decision Process Approach

投标 竞争对手分析 私人信息检索 微观经济学 采购 共同价值拍卖 会话(web分析) 完整信息 业务 经济 产业组织 计算机科学 营销 计算机安全 广告
作者
Amy Greenwald,Karthik Kannan,Ramayya Krishnan
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:21 (1): 15-36 被引量:45
标识
DOI:10.1287/isre.1080.0168
摘要

Each market session in a reverse electronic marketplace features a procurer and many suppliers. An important attribute of a market session chosen by the procurer is its information revelation policy. The revelation policy determines the information (such as the number of competitors, the winning bids, etc.) that will be revealed to participating suppliers at the conclusion of each market session. Suppliers participating in multiple market sessions use strategic bidding and fake their own cost structure to obtain information revealed at the end of each market session. The information helps to reduce two types of uncertainties encountered in future market sessions, namely, their opponents' cost structure and an estimate of the number of their competitors. Whereas the first type of uncertainty is present in physical and e-marketplaces, the second type of uncertainty naturally arises in IT-enabled marketplaces. Through their effect on the uncertainty faced by suppliers, information revelation policies influence the bidding behavior of suppliers which, in turn, determines the expected price paid by the procurer. Therefore, the choice of information revelation policy has important consequences for the procurer. This paper develops a partially observable Markov decision process model of supplier bidding behavior and uses a multiagent e-marketplace simulation to analyze the effect that two commonly used information revelation policies—complete information policy and incomplete information policy—have on the expected price paid by the procurer. We find that the expected price under the complete information policy is lower than that under the incomplete information policy. The integration of ideas from the multiagents literature, the machine-learning literature, and the economics literature to develop a method to evaluate information revelation policies in e-marketplaces is a novel feature of this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lilac完成签到 ,获得积分10
刚刚
刚刚
刚刚
MissXia完成签到,获得积分10
刚刚
NUNKI完成签到,获得积分10
刚刚
迅速星星完成签到,获得积分10
刚刚
科研废物发布了新的文献求助10
1秒前
ltc完成签到,获得积分10
1秒前
科研通AI5应助诚c采纳,获得10
1秒前
Mrrr发布了新的文献求助10
1秒前
sganthem完成签到,获得积分10
1秒前
2秒前
哦吼完成签到,获得积分10
2秒前
2秒前
lm发布了新的文献求助10
3秒前
月白发布了新的文献求助10
3秒前
π.完成签到,获得积分10
4秒前
4秒前
李健应助长情洙采纳,获得10
4秒前
4秒前
科研小白完成签到,获得积分10
5秒前
5秒前
RandyD发布了新的文献求助10
5秒前
5秒前
最最最发布了新的文献求助10
5秒前
6秒前
π.发布了新的文献求助10
6秒前
7秒前
yangyangyang发布了新的文献求助10
7秒前
siccy完成签到 ,获得积分10
7秒前
图南关注了科研通微信公众号
8秒前
我是老大应助Mrrr采纳,获得10
8秒前
ZTT发布了新的文献求助10
8秒前
调皮的凝旋完成签到,获得积分10
8秒前
JiangY完成签到,获得积分10
8秒前
妮妮爱smile完成签到,获得积分10
9秒前
咕噜仔发布了新的文献求助10
9秒前
10秒前
研友_VZG7GZ应助King16采纳,获得10
10秒前
lyn发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759