On Evaluating Information Revelation Policies in Procurement Auctions: A Markov Decision Process Approach

投标 竞争对手分析 私人信息检索 微观经济学 采购 共同价值拍卖 会话(web分析) 完整信息 业务 经济 产业组织 计算机科学 营销 计算机安全 广告
作者
Amy Greenwald,Karthik Kannan,Ramayya Krishnan
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:21 (1): 15-36 被引量:45
标识
DOI:10.1287/isre.1080.0168
摘要

Each market session in a reverse electronic marketplace features a procurer and many suppliers. An important attribute of a market session chosen by the procurer is its information revelation policy. The revelation policy determines the information (such as the number of competitors, the winning bids, etc.) that will be revealed to participating suppliers at the conclusion of each market session. Suppliers participating in multiple market sessions use strategic bidding and fake their own cost structure to obtain information revealed at the end of each market session. The information helps to reduce two types of uncertainties encountered in future market sessions, namely, their opponents' cost structure and an estimate of the number of their competitors. Whereas the first type of uncertainty is present in physical and e-marketplaces, the second type of uncertainty naturally arises in IT-enabled marketplaces. Through their effect on the uncertainty faced by suppliers, information revelation policies influence the bidding behavior of suppliers which, in turn, determines the expected price paid by the procurer. Therefore, the choice of information revelation policy has important consequences for the procurer. This paper develops a partially observable Markov decision process model of supplier bidding behavior and uses a multiagent e-marketplace simulation to analyze the effect that two commonly used information revelation policies—complete information policy and incomplete information policy—have on the expected price paid by the procurer. We find that the expected price under the complete information policy is lower than that under the incomplete information policy. The integration of ideas from the multiagents literature, the machine-learning literature, and the economics literature to develop a method to evaluate information revelation policies in e-marketplaces is a novel feature of this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
young完成签到,获得积分10
刚刚
Hedy完成签到,获得积分10
刚刚
shiizii发布了新的文献求助10
刚刚
贺贺发布了新的文献求助10
1秒前
阿凡达发布了新的文献求助10
1秒前
LiXF发布了新的文献求助10
2秒前
2秒前
3秒前
完美世界应助Oh采纳,获得10
3秒前
3秒前
smottom应助天道酬勤采纳,获得10
4秒前
Zh发布了新的文献求助10
4秒前
科研狗完成签到,获得积分10
5秒前
5秒前
感动傀斗发布了新的文献求助10
5秒前
Ch185完成签到,获得积分10
5秒前
tang给张123的求助进行了留言
6秒前
彬墩墩发布了新的文献求助20
6秒前
橘络完成签到 ,获得积分10
6秒前
CR7应助Kayla采纳,获得20
7秒前
李健的小迷弟应助shiizii采纳,获得10
8秒前
Ankh完成签到 ,获得积分10
8秒前
9秒前
善良天抒发布了新的文献求助10
9秒前
我不看月亮完成签到,获得积分10
10秒前
www发布了新的文献求助20
10秒前
淡定从凝完成签到,获得积分10
10秒前
超大碗芋泥完成签到,获得积分10
11秒前
xxxgoldxsx完成签到,获得积分10
11秒前
FashionBoy应助平生采纳,获得10
12秒前
alex完成签到,获得积分10
13秒前
Ding应助dddd采纳,获得10
13秒前
Nara2021完成签到,获得积分10
13秒前
13秒前
轻狂书生完成签到,获得积分10
14秒前
14秒前
harmory完成签到,获得积分10
14秒前
Ding应助小杨采纳,获得10
14秒前
大眼睛的草莓给大眼睛的草莓的求助进行了留言
14秒前
形容词加名词完成签到 ,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301