On Evaluating Information Revelation Policies in Procurement Auctions: A Markov Decision Process Approach

投标 竞争对手分析 私人信息检索 微观经济学 采购 共同价值拍卖 会话(web分析) 完整信息 业务 经济 产业组织 计算机科学 营销 计算机安全 广告
作者
Amy Greenwald,Karthik Kannan,Ramayya Krishnan
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:21 (1): 15-36 被引量:45
标识
DOI:10.1287/isre.1080.0168
摘要

Each market session in a reverse electronic marketplace features a procurer and many suppliers. An important attribute of a market session chosen by the procurer is its information revelation policy. The revelation policy determines the information (such as the number of competitors, the winning bids, etc.) that will be revealed to participating suppliers at the conclusion of each market session. Suppliers participating in multiple market sessions use strategic bidding and fake their own cost structure to obtain information revealed at the end of each market session. The information helps to reduce two types of uncertainties encountered in future market sessions, namely, their opponents' cost structure and an estimate of the number of their competitors. Whereas the first type of uncertainty is present in physical and e-marketplaces, the second type of uncertainty naturally arises in IT-enabled marketplaces. Through their effect on the uncertainty faced by suppliers, information revelation policies influence the bidding behavior of suppliers which, in turn, determines the expected price paid by the procurer. Therefore, the choice of information revelation policy has important consequences for the procurer. This paper develops a partially observable Markov decision process model of supplier bidding behavior and uses a multiagent e-marketplace simulation to analyze the effect that two commonly used information revelation policies—complete information policy and incomplete information policy—have on the expected price paid by the procurer. We find that the expected price under the complete information policy is lower than that under the incomplete information policy. The integration of ideas from the multiagents literature, the machine-learning literature, and the economics literature to develop a method to evaluate information revelation policies in e-marketplaces is a novel feature of this paper.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奶酪发布了新的文献求助30
1秒前
pp发布了新的文献求助10
2秒前
2秒前
2秒前
热情怡完成签到,获得积分10
3秒前
赫三问完成签到,获得积分10
3秒前
3秒前
予安完成签到,获得积分10
5秒前
科研通AI2S应助czj采纳,获得10
5秒前
科研顺利完成签到,获得积分10
5秒前
5秒前
单薄的诗柳完成签到,获得积分10
6秒前
GXLong完成签到,获得积分10
6秒前
Yu应助赫三问采纳,获得10
6秒前
karL完成签到,获得积分10
7秒前
7秒前
英姑应助冷静的天与采纳,获得10
7秒前
Yohi完成签到 ,获得积分10
8秒前
十一发布了新的文献求助10
8秒前
哒丝萌德发布了新的文献求助10
8秒前
水123发布了新的文献求助10
9秒前
9秒前
zmr123发布了新的文献求助10
9秒前
Jasper应助伶俐的采枫采纳,获得10
10秒前
10秒前
彭于晏应助TQY采纳,获得10
11秒前
wwl发布了新的文献求助10
11秒前
12秒前
lili完成签到 ,获得积分10
12秒前
Kyrie完成签到,获得积分10
12秒前
刑不上院士,礼不下博士完成签到,获得积分10
12秒前
冬雾完成签到 ,获得积分10
13秒前
老福贵儿发布了新的文献求助10
13秒前
1111完成签到,获得积分10
14秒前
领导范儿应助cz采纳,获得10
14秒前
14秒前
15秒前
6666应助予安采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600432
求助须知:如何正确求助?哪些是违规求助? 4686051
关于积分的说明 14841577
捐赠科研通 4676571
什么是DOI,文献DOI怎么找? 2538725
邀请新用户注册赠送积分活动 1505789
关于科研通互助平台的介绍 1471195