Cache “less for more” in information-centric networks (extended version)

计算机科学 中间性中心性 隐藏物 计算机网络 网络拓扑 以信息为中心的网络 节点(物理) 分布式计算 中心性 互联网 钥匙(锁) 虚假分享 CPU缓存 缓存算法 计算机安全 万维网 数学 结构工程 组合数学 工程类
作者
Wei Koong Chai,Diliang He,Ioannis Psaras,George Pavlou
出处
期刊:Computer Communications [Elsevier]
卷期号:36 (7): 758-770 被引量:237
标识
DOI:10.1016/j.comcom.2013.01.007
摘要

Ubiquitous in-network caching is one of the key aspects of information-centric networking (ICN) which has received widespread research interest in recent years. In one of the key relevant proposals known as Content-Centric Networking (CCN), the premise is that leveraging in-network caching to store content in every node along the delivery path can enhance content delivery. We question such an indiscriminate universal caching strategy and investigate whether caching less can actually achieve more. More specifically, we study the problem of en route caching and investigate if caching in only a subset of nodes along the delivery path can achieve better performance in terms of cache and server hit rates. We first study the behavior of CCN’s ubiquitous caching and observe that even naïve random caching at a single intermediate node along the delivery path can achieve similar and, under certain conditions, even better caching gain. Motivated by this, we propose a centrality-based caching algorithm by exploiting the concept of (ego network) betweenness centrality to improve the caching gain and eliminate the uncertainty in the performance of the simplistic random caching strategy. Our results suggest that our solution can consistently achieve better gain across both synthetic and real network topologies that have different structural properties. We further find that the effectiveness of our solution is correlated to the precise structure of the network topology whereby the scheme is effective in topologies that exhibit power law betweenness distribution (as in Internet AS and WWW networks).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜鸡小尹完成签到,获得积分10
刚刚
大模型应助杨涵采纳,获得10
1秒前
1秒前
心平气和发布了新的文献求助20
1秒前
Suraim完成签到,获得积分10
2秒前
大菊完成签到,获得积分10
2秒前
2秒前
零几年完成签到,获得积分10
3秒前
阅遍SCI完成签到,获得积分10
3秒前
稻香与狗完成签到,获得积分10
3秒前
仰泳鲫鱼发布了新的文献求助10
3秒前
闭着眼数星星完成签到,获得积分10
3秒前
王王发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
孝顺的飞荷完成签到,获得积分10
9秒前
9秒前
zhiwei完成签到 ,获得积分10
9秒前
Orange应助晴雨采纳,获得10
10秒前
10秒前
Preseverance完成签到,获得积分10
10秒前
10秒前
11秒前
咦yiyi发布了新的文献求助10
11秒前
11发布了新的文献求助10
12秒前
anfudeng发布了新的文献求助10
12秒前
魔幻冷梅发布了新的文献求助10
13秒前
Godzilla发布了新的文献求助10
13秒前
杨涵发布了新的文献求助10
14秒前
14秒前
浮游应助keyan123采纳,获得10
15秒前
Lynth_雪鸮发布了新的文献求助10
16秒前
奋斗的小研完成签到,获得积分10
17秒前
18秒前
苏晓聪完成签到,获得积分10
18秒前
咦yiyi驳回了null应助
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672