亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cache “less for more” in information-centric networks (extended version)

计算机科学 中间性中心性 隐藏物 计算机网络 网络拓扑 以信息为中心的网络 节点(物理) 分布式计算 中心性 互联网 钥匙(锁) 虚假分享 CPU缓存 缓存算法 计算机安全 万维网 数学 结构工程 组合数学 工程类
作者
Wei Koong Chai,Diliang He,Ioannis Psaras,George Pavlou
出处
期刊:Computer Communications [Elsevier]
卷期号:36 (7): 758-770 被引量:237
标识
DOI:10.1016/j.comcom.2013.01.007
摘要

Ubiquitous in-network caching is one of the key aspects of information-centric networking (ICN) which has received widespread research interest in recent years. In one of the key relevant proposals known as Content-Centric Networking (CCN), the premise is that leveraging in-network caching to store content in every node along the delivery path can enhance content delivery. We question such an indiscriminate universal caching strategy and investigate whether caching less can actually achieve more. More specifically, we study the problem of en route caching and investigate if caching in only a subset of nodes along the delivery path can achieve better performance in terms of cache and server hit rates. We first study the behavior of CCN’s ubiquitous caching and observe that even naïve random caching at a single intermediate node along the delivery path can achieve similar and, under certain conditions, even better caching gain. Motivated by this, we propose a centrality-based caching algorithm by exploiting the concept of (ego network) betweenness centrality to improve the caching gain and eliminate the uncertainty in the performance of the simplistic random caching strategy. Our results suggest that our solution can consistently achieve better gain across both synthetic and real network topologies that have different structural properties. We further find that the effectiveness of our solution is correlated to the precise structure of the network topology whereby the scheme is effective in topologies that exhibit power law betweenness distribution (as in Internet AS and WWW networks).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的伊完成签到,获得积分10
8秒前
17秒前
44秒前
44秒前
Alimove发布了新的文献求助10
47秒前
大模型应助Alimove采纳,获得30
57秒前
FashionBoy应助ZBQ采纳,获得10
1分钟前
浮游应助zing采纳,获得10
1分钟前
情怀应助爱妍采纳,获得10
1分钟前
1分钟前
ZBQ发布了新的文献求助10
1分钟前
1分钟前
1分钟前
爱妍发布了新的文献求助10
1分钟前
1分钟前
1分钟前
爱妍完成签到,获得积分20
1分钟前
彭于晏应助study采纳,获得10
1分钟前
2分钟前
study完成签到,获得积分10
2分钟前
2分钟前
可爱的函函应助study采纳,获得10
2分钟前
2分钟前
study发布了新的文献求助10
2分钟前
2分钟前
study发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hehe完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
Huzhu应助科研通管家采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
balko完成签到,获得积分10
4分钟前
4分钟前
4分钟前
完美世界应助阿巴采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488561
求助须知:如何正确求助?哪些是违规求助? 4587391
关于积分的说明 14413838
捐赠科研通 4518759
什么是DOI,文献DOI怎么找? 2476074
邀请新用户注册赠送积分活动 1461541
关于科研通互助平台的介绍 1434505