亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid Ion Conductor: Polysulfide Exclusion for Advanced Lithium Sulfur Batteries

多硫化物 阳极 电池(电) 电解质 储能 阴极 锂(药物) 电极 材料科学 化学 功率(物理) 物理 医学 物理化学 量子力学 内分泌学
作者
Hee‐Tak Kim,Jin–Hong Lee,Hyungjun Noh
出处
期刊:Meeting abstracts 卷期号:MA2016-03 (1): 41-41
标识
DOI:10.1149/ma2016-03/1/41
摘要

Today’s lithium ion batteries, which have more than twice energy of those first released 25 years ago, power most of mobile electronic devices. However, their energy density is not high enough to provide electric vehicles and drones with mobility freedom. To make electric vehicles and drones more affordable, one needs batteries that can offer a longer cruise range with a lower cost. In this regard, lithium–sulfur (Li–S) battery is now considered a promising candidate to succeed lithium-ion batteries owing to its high theoretical energy density of 2500 Wh∙kg -1 , non-toxic nature, low cost, and natural abundance. Despite such promises, the commercialization of Li–S batteries has yet to succeed even after sustained effort spanning several decades. Significant problems encountered have included low sulfur utilization, short cycle life, low cycling efficiency, and high self-discharge rate. These are mainly attributed to a process known as the polysulfide (PS) shuttle; PS chains dissolved in the electrolyte diffuse to the Li anode where they directly react with the Li metal to produce lower order PS species, which diffuse back to the sulfur cathode to regenerate higher PS forms. The PS shuttle leads to incomplete charging of the sulfur electrode, corrosion of the Li electrode, and formation of electrochemically inactive lithium sulfates (Li x SO y ) on the sulfur electrode, thus resulting in poor battery performance. Prevention of the PS shuttle is therefore extremely important for the practical use of Li–S batteries. In this talk, we present a single ion conductor which effectively rejects PS when used as an electrolyte medium for lithium sulfur battery and demonstrate a quasi-solid state lithium sulfur battery employing it. The ion conductor features a perfluorinated lithium sulfonate polymer swollen with organic polar solvents. For the ion conduction, Li + is the sole charge carrier, because the SO 3 - groups attached to the polymer chain are immobilized and the ion conductor does not include any bi-ionic lithium salt. The solvents selected from an intensive screening process dissociate polymeric lithium salts and form a 5~6 nm-sized Li + conducting channels. As a result, the ion conductivity of the ion conductor is as high as 10 -4 S cm -1 in its quasi-solid state. To our interest, the PS solubility of the hybrid ion conductor is quite low although the solvents have high PS solubility. This behavior originates from Donnan exclusion principle; the fixed negative charges decrease the Donnan potential of the conductor, with lowering its equilibrium PS concentration. Such Donnan exclusion effect is more intensified in the absence of bi-ionic lithium salt, therefore, to strengthen PS rejection function, the hybrid ion conductor is designed without any lithium salts. The sulfur battery based on the hybrid ion conductor has highly interesting features. The composite sulfur cathode comprising of sulfur/carbon composite and the hybrid ion conductor effectively confines PS in the vicinity of the carbon matrix owing to the nearby PS-rejecting hybrid ion conductors. Moreover, the polymer electrolyte membrane between the sulfur cathode and lithium further blocks PS passage. Owing to its quasi-solid state nature, the hybrid ion conductor allows the design of bipolar stack-type lithium sulfur battery. Because the electrolyte phases of each cell are spatially separated in bipolar configuration, shunt current, which is unavoidable for liquid electrolyte based batteries, can be eliminated. The electrochemical characteristics and performances of the quasi-solid state lithium sulfur battery are presented and the underlying physics is discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心的采萱完成签到,获得积分20
8秒前
46秒前
健壮熊猫发布了新的文献求助10
50秒前
健壮熊猫完成签到,获得积分10
56秒前
bobby完成签到,获得积分10
1分钟前
aaa142hehe完成签到 ,获得积分10
2分钟前
2分钟前
花开发布了新的文献求助10
2分钟前
Lucas应助花开采纳,获得10
3分钟前
3分钟前
容若发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
bju完成签到,获得积分10
3分钟前
agent完成签到 ,获得积分10
4分钟前
科研通AI2S应助容若采纳,获得10
5分钟前
5分钟前
sep发布了新的文献求助30
5分钟前
sep完成签到,获得积分10
5分钟前
汉堡包应助sss采纳,获得10
5分钟前
6分钟前
sss发布了新的文献求助10
6分钟前
酷波er应助容若采纳,获得10
6分钟前
sss完成签到,获得积分20
6分钟前
timemaster666应助sss采纳,获得10
6分钟前
7分钟前
粥粥舟发布了新的文献求助10
7分钟前
SciGPT应助科研通管家采纳,获得10
7分钟前
吱吱草莓派完成签到 ,获得积分10
8分钟前
bdsb完成签到,获得积分10
8分钟前
852应助蔡俊辉采纳,获得10
8分钟前
bamboo完成签到 ,获得积分10
8分钟前
LZHWSND完成签到,获得积分10
8分钟前
9分钟前
大个应助粥粥舟采纳,获得10
10分钟前
科研通AI2S应助科研小刘采纳,获得10
10分钟前
cy0824完成签到 ,获得积分10
11分钟前
1437594843完成签到 ,获得积分10
11分钟前
11分钟前
希夷发布了新的文献求助10
11分钟前
12分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142692
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806981
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328