A meta‐analysis of the effects of nutrient enrichment on litter decomposition in streams

营养物 垃圾箱 溪流 营养循环 植物凋落物 生态系统 环境科学 生态学 分解 生物 计算机网络 计算机科学
作者
Verónica Ferreira,Bastien Castagneyrol,Julia Koricheva,Vladislav Gulis,Éric Chauvet,Manuel A. S. Graça
出处
期刊:Biological Reviews [Wiley]
卷期号:90 (3): 669-688 被引量:219
标识
DOI:10.1111/brv.12125
摘要

ABSTRACT The trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human‐induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem‐level process in forest streams. Here, we present a meta‐analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient‐enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream‐reach scale. By contrast, nutrient enrichment at the litter‐bag scale, often by using diffusing substrates, does not provide uniform controllable nutrient release at either temporal or spatial scales, suggesting that this approach should be abandoned. In field manipulative experiments, the addition of both nitrogen (N) and phosphorus (P) resulted in stronger stimulation of litter decomposition than the addition of N or P alone, suggesting that there might be nutrient co‐limitation of decomposition in streams. The magnitude of the nutrient‐enrichment effect on litter decomposition was higher for wood than for leaves, and for low‐quality than for high‐quality leaves. The effect of nutrient enrichment on litter decomposition may also depend on climate. The tendency for larger effect size in colder regions suggests that patterns of biogeography of invertebrate decomposers may be modulating the effect of nutrient enrichment on litter decomposition. Although studies in temperate environments were overrepresented in our database, our meta‐analysis suggests that the effect of nutrient enrichment might be strongest in cold oligotrophic streams that depend on low‐quality plant litter inputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助有风采纳,获得10
1秒前
Lin完成签到,获得积分10
1秒前
科研通AI5应助肉松小贝采纳,获得10
2秒前
粉色完成签到,获得积分10
2秒前
Ll发布了新的文献求助10
2秒前
2秒前
愉快彩虹发布了新的文献求助10
3秒前
CTL完成签到,获得积分10
3秒前
3秒前
共享精神应助加减乘除采纳,获得10
3秒前
3秒前
恬恬完成签到,获得积分10
3秒前
4秒前
22发布了新的文献求助10
4秒前
aacc956发布了新的文献求助10
4秒前
4秒前
谨慎涵柏完成签到,获得积分10
5秒前
快乐的如风完成签到,获得积分10
6秒前
7秒前
吃猫的鱼完成签到,获得积分10
7秒前
脑洞疼应助润润轩轩采纳,获得10
8秒前
刘文静完成签到,获得积分10
9秒前
Southluuu发布了新的文献求助10
9秒前
chenjyuu发布了新的文献求助10
9秒前
9秒前
粗暴的仙人掌完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
logic发布了新的文献求助10
10秒前
习习应助生动的雨竹采纳,获得10
10秒前
bo完成签到 ,获得积分10
10秒前
迟大猫应助啵乐乐采纳,获得10
11秒前
安雯完成签到 ,获得积分10
11秒前
HuLL完成签到,获得积分10
11秒前
Yolo完成签到 ,获得积分10
11秒前
难过的慕青完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759