Multimodal classification of Alzheimer's disease and mild cognitive impairment

医学 认知障碍 疾病 认知 阿尔茨海默病 心理学 神经科学 内科学
作者
Daoqiang Zhang,Yaping Wang,Luping Zhou,Hong Yuan,Dinggang Shen
出处
期刊:NeuroImage [Elsevier]
卷期号:55 (3): 856-867 被引量:1149
标识
DOI:10.1016/j.neuroimage.2011.01.008
摘要

Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment (MCI)), has attracted more and more attention recently. So far, multiple biomarkers have been shown to be sensitive to the diagnosis of AD and MCI, i.e., structural MR imaging (MRI) for brain atrophy measurement, functional imaging (e.g., FDG-PET) for hypometabolism quantification, and cerebrospinal fluid (CSF) for quantification of specific proteins. However, most existing research focuses on only a single modality of biomarkers for diagnosis of AD and MCI, although recent studies have shown that different biomarkers may provide complementary information for the diagnosis of AD and MCI. In this paper, we propose to combine three modalities of biomarkers, i.e., MRI, FDG-PET, and CSF biomarkers, to discriminate between AD (or MCI) and healthy controls, using a kernel combination method. Specifically, ADNI baseline MRI, FDG-PET, and CSF data from 51 AD patients, 99 MCI patients (including 43 MCI converters who had converted to AD within 18 months and 56 MCI non-converters who had not converted to AD within 18 months), and 52 healthy controls are used for development and validation of our proposed multimodal classification method. In particular, for each MR or FDG-PET image, 93 volumetric features are extracted from the 93 regions of interest (ROIs), automatically labeled by an atlas warping algorithm. For CSF biomarkers, their original values are directly used as features. Then, a linear support vector machine (SVM) is adopted to evaluate the classification accuracy, using a 10-fold cross-validation. As a result, for classifying AD from healthy controls, we achieve a classification accuracy of 93.2% (with a sensitivity of 93% and a specificity of 93.3%) when combining all three modalities of biomarkers, and only 86.5% when using even the best individual modality of biomarkers. Similarly, for classifying MCI from healthy controls, we achieve a classification accuracy of 76.4% (with a sensitivity of 81.8% and a specificity of 66%) for our combined method, and only 72% even using the best individual modality of biomarkers. Further analysis on MCI sensitivity of our combined method indicates that 91.5% of MCI converters and 73.4% of MCI non-converters are correctly classified. Moreover, we also evaluate the classification performance when employing a feature selection method to select the most discriminative MR and FDG-PET features. Again, our combined method shows considerably better performance, compared to the case of using an individual modality of biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松笙完成签到,获得积分10
1秒前
zhang完成签到,获得积分10
1秒前
aaa完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
顺顺发布了新的文献求助20
3秒前
3秒前
黎黎完成签到,获得积分10
3秒前
3秒前
camellia发布了新的文献求助10
3秒前
4秒前
4秒前
筱玉完成签到,获得积分10
4秒前
李文博发布了新的文献求助10
4秒前
斯文静曼发布了新的文献求助10
4秒前
jiaolulu完成签到,获得积分10
4秒前
优秀的枫完成签到,获得积分20
4秒前
4秒前
美嘉美完成签到,获得积分10
4秒前
5秒前
炙热芝完成签到,获得积分10
6秒前
嘒彼小星完成签到 ,获得积分10
6秒前
6秒前
哭泣的翠丝完成签到,获得积分10
7秒前
7秒前
jennyyu完成签到,获得积分10
7秒前
terence完成签到,获得积分10
7秒前
8秒前
8秒前
HopeStar发布了新的文献求助10
8秒前
马保国123发布了新的文献求助10
8秒前
Hello应助蓝莓松饼采纳,获得10
9秒前
9秒前
优秀的枫发布了新的文献求助10
9秒前
9秒前
KDC完成签到,获得积分10
9秒前
MuMu完成签到,获得积分10
10秒前
10秒前
Yana1311完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759