Multimodal classification of Alzheimer's disease and mild cognitive impairment

医学 认知障碍 疾病 认知 阿尔茨海默病 心理学 神经科学 内科学
作者
Daoqiang Zhang,Yaping Wang,Luping Zhou,Hong Yuan,Dinggang Shen
出处
期刊:NeuroImage [Elsevier]
卷期号:55 (3): 856-867 被引量:1223
标识
DOI:10.1016/j.neuroimage.2011.01.008
摘要

Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment (MCI)), has attracted more and more attention recently. So far, multiple biomarkers have been shown to be sensitive to the diagnosis of AD and MCI, i.e., structural MR imaging (MRI) for brain atrophy measurement, functional imaging (e.g., FDG-PET) for hypometabolism quantification, and cerebrospinal fluid (CSF) for quantification of specific proteins. However, most existing research focuses on only a single modality of biomarkers for diagnosis of AD and MCI, although recent studies have shown that different biomarkers may provide complementary information for the diagnosis of AD and MCI. In this paper, we propose to combine three modalities of biomarkers, i.e., MRI, FDG-PET, and CSF biomarkers, to discriminate between AD (or MCI) and healthy controls, using a kernel combination method. Specifically, ADNI baseline MRI, FDG-PET, and CSF data from 51 AD patients, 99 MCI patients (including 43 MCI converters who had converted to AD within 18 months and 56 MCI non-converters who had not converted to AD within 18 months), and 52 healthy controls are used for development and validation of our proposed multimodal classification method. In particular, for each MR or FDG-PET image, 93 volumetric features are extracted from the 93 regions of interest (ROIs), automatically labeled by an atlas warping algorithm. For CSF biomarkers, their original values are directly used as features. Then, a linear support vector machine (SVM) is adopted to evaluate the classification accuracy, using a 10-fold cross-validation. As a result, for classifying AD from healthy controls, we achieve a classification accuracy of 93.2% (with a sensitivity of 93% and a specificity of 93.3%) when combining all three modalities of biomarkers, and only 86.5% when using even the best individual modality of biomarkers. Similarly, for classifying MCI from healthy controls, we achieve a classification accuracy of 76.4% (with a sensitivity of 81.8% and a specificity of 66%) for our combined method, and only 72% even using the best individual modality of biomarkers. Further analysis on MCI sensitivity of our combined method indicates that 91.5% of MCI converters and 73.4% of MCI non-converters are correctly classified. Moreover, we also evaluate the classification performance when employing a feature selection method to select the most discriminative MR and FDG-PET features. Again, our combined method shows considerably better performance, compared to the case of using an individual modality of biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
666发布了新的文献求助10
2秒前
简简简发布了新的文献求助10
3秒前
3秒前
4秒前
黄景阳完成签到 ,获得积分10
4秒前
生椰拿铁完成签到,获得积分10
5秒前
ssj完成签到,获得积分10
5秒前
白云四季发布了新的文献求助10
6秒前
归尘发布了新的文献求助10
6秒前
6秒前
稳重听双发布了新的文献求助10
6秒前
xia完成签到 ,获得积分10
7秒前
7秒前
Akim应助迷人的帅哥采纳,获得10
8秒前
9秒前
木又应助刘隽轩采纳,获得10
9秒前
量子星尘发布了新的文献求助30
10秒前
简简简完成签到,获得积分10
11秒前
12秒前
action完成签到 ,获得积分10
12秒前
12秒前
学不懂数学完成签到,获得积分10
13秒前
15秒前
Loki完成签到,获得积分10
15秒前
Tokgo完成签到,获得积分10
15秒前
15秒前
15秒前
慧慧发布了新的文献求助10
17秒前
17秒前
稳重听双完成签到,获得积分10
17秒前
17秒前
海中有月完成签到 ,获得积分10
18秒前
bkagyin应助白云四季采纳,获得10
18秒前
CipherSage应助dd36采纳,获得10
18秒前
20秒前
21秒前
彭于晏应助AAA工位主理人采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424683
求助须知:如何正确求助?哪些是违规求助? 4539082
关于积分的说明 14165073
捐赠科研通 4456131
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483