Multimodal classification of Alzheimer's disease and mild cognitive impairment

医学 认知障碍 疾病 认知 阿尔茨海默病 心理学 神经科学 内科学
作者
Daoqiang Zhang,Yaping Wang,Luping Zhou,Hong Yuan,Dinggang Shen
出处
期刊:NeuroImage [Elsevier BV]
卷期号:55 (3): 856-867 被引量:1158
标识
DOI:10.1016/j.neuroimage.2011.01.008
摘要

Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment (MCI)), has attracted more and more attention recently. So far, multiple biomarkers have been shown to be sensitive to the diagnosis of AD and MCI, i.e., structural MR imaging (MRI) for brain atrophy measurement, functional imaging (e.g., FDG-PET) for hypometabolism quantification, and cerebrospinal fluid (CSF) for quantification of specific proteins. However, most existing research focuses on only a single modality of biomarkers for diagnosis of AD and MCI, although recent studies have shown that different biomarkers may provide complementary information for the diagnosis of AD and MCI. In this paper, we propose to combine three modalities of biomarkers, i.e., MRI, FDG-PET, and CSF biomarkers, to discriminate between AD (or MCI) and healthy controls, using a kernel combination method. Specifically, ADNI baseline MRI, FDG-PET, and CSF data from 51 AD patients, 99 MCI patients (including 43 MCI converters who had converted to AD within 18 months and 56 MCI non-converters who had not converted to AD within 18 months), and 52 healthy controls are used for development and validation of our proposed multimodal classification method. In particular, for each MR or FDG-PET image, 93 volumetric features are extracted from the 93 regions of interest (ROIs), automatically labeled by an atlas warping algorithm. For CSF biomarkers, their original values are directly used as features. Then, a linear support vector machine (SVM) is adopted to evaluate the classification accuracy, using a 10-fold cross-validation. As a result, for classifying AD from healthy controls, we achieve a classification accuracy of 93.2% (with a sensitivity of 93% and a specificity of 93.3%) when combining all three modalities of biomarkers, and only 86.5% when using even the best individual modality of biomarkers. Similarly, for classifying MCI from healthy controls, we achieve a classification accuracy of 76.4% (with a sensitivity of 81.8% and a specificity of 66%) for our combined method, and only 72% even using the best individual modality of biomarkers. Further analysis on MCI sensitivity of our combined method indicates that 91.5% of MCI converters and 73.4% of MCI non-converters are correctly classified. Moreover, we also evaluate the classification performance when employing a feature selection method to select the most discriminative MR and FDG-PET features. Again, our combined method shows considerably better performance, compared to the case of using an individual modality of biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助Mansis采纳,获得10
刚刚
东木应助风清扬采纳,获得100
1秒前
快乐的海亦完成签到,获得积分20
2秒前
南宫清涟完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
灰灰完成签到 ,获得积分10
4秒前
maomao完成签到,获得积分10
4秒前
4秒前
楚舜华完成签到,获得积分10
4秒前
5秒前
111发布了新的文献求助10
5秒前
5秒前
Jess完成签到,获得积分10
6秒前
木心应助南宫清涟采纳,获得20
6秒前
橙色小瓶子完成签到,获得积分10
6秒前
6秒前
Michael_li完成签到,获得积分10
6秒前
领导范儿应助A2150530290采纳,获得10
6秒前
跳跃毒娘发布了新的文献求助10
6秒前
深情安青应助yn采纳,获得10
7秒前
7秒前
7秒前
六便士在攒完成签到,获得积分10
7秒前
黑加仑发布了新的文献求助10
7秒前
SciGPT应助hanzhou1314采纳,获得30
8秒前
gxmu6322发布了新的文献求助10
8秒前
烟花应助极地东风采纳,获得10
9秒前
9秒前
9秒前
ABBYTHU18完成签到,获得积分10
10秒前
ilk666完成签到,获得积分10
10秒前
复杂便当发布了新的文献求助10
10秒前
10秒前
jiaru发布了新的文献求助10
10秒前
10秒前
wangye完成签到,获得积分10
11秒前
欧阳振应助雪白葵阴采纳,获得10
11秒前
gll206发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582