Multimodal classification of Alzheimer's disease and mild cognitive impairment

医学 认知障碍 疾病 认知 阿尔茨海默病 心理学 神经科学 内科学
作者
Daoqiang Zhang,Yaping Wang,Luping Zhou,Hong Yuan,Dinggang Shen
出处
期刊:NeuroImage [Elsevier BV]
卷期号:55 (3): 856-867 被引量:1158
标识
DOI:10.1016/j.neuroimage.2011.01.008
摘要

Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment (MCI)), has attracted more and more attention recently. So far, multiple biomarkers have been shown to be sensitive to the diagnosis of AD and MCI, i.e., structural MR imaging (MRI) for brain atrophy measurement, functional imaging (e.g., FDG-PET) for hypometabolism quantification, and cerebrospinal fluid (CSF) for quantification of specific proteins. However, most existing research focuses on only a single modality of biomarkers for diagnosis of AD and MCI, although recent studies have shown that different biomarkers may provide complementary information for the diagnosis of AD and MCI. In this paper, we propose to combine three modalities of biomarkers, i.e., MRI, FDG-PET, and CSF biomarkers, to discriminate between AD (or MCI) and healthy controls, using a kernel combination method. Specifically, ADNI baseline MRI, FDG-PET, and CSF data from 51 AD patients, 99 MCI patients (including 43 MCI converters who had converted to AD within 18 months and 56 MCI non-converters who had not converted to AD within 18 months), and 52 healthy controls are used for development and validation of our proposed multimodal classification method. In particular, for each MR or FDG-PET image, 93 volumetric features are extracted from the 93 regions of interest (ROIs), automatically labeled by an atlas warping algorithm. For CSF biomarkers, their original values are directly used as features. Then, a linear support vector machine (SVM) is adopted to evaluate the classification accuracy, using a 10-fold cross-validation. As a result, for classifying AD from healthy controls, we achieve a classification accuracy of 93.2% (with a sensitivity of 93% and a specificity of 93.3%) when combining all three modalities of biomarkers, and only 86.5% when using even the best individual modality of biomarkers. Similarly, for classifying MCI from healthy controls, we achieve a classification accuracy of 76.4% (with a sensitivity of 81.8% and a specificity of 66%) for our combined method, and only 72% even using the best individual modality of biomarkers. Further analysis on MCI sensitivity of our combined method indicates that 91.5% of MCI converters and 73.4% of MCI non-converters are correctly classified. Moreover, we also evaluate the classification performance when employing a feature selection method to select the most discriminative MR and FDG-PET features. Again, our combined method shows considerably better performance, compared to the case of using an individual modality of biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9420完成签到,获得积分10
刚刚
隐形曼青应助hunajx采纳,获得10
刚刚
sasasas发布了新的文献求助10
1秒前
HN洪完成签到,获得积分10
1秒前
莫言发布了新的文献求助10
1秒前
shuoshuo发布了新的文献求助10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
无曲应助科研通管家采纳,获得20
2秒前
2秒前
酷酷问梅完成签到,获得积分10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
野狗拉丽发布了新的文献求助10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
Koalas应助科研通管家采纳,获得20
2秒前
浮游应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Lilith应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
反杀闰土的猹完成签到 ,获得积分10
4秒前
5秒前
6秒前
酷波er应助qinkoko采纳,获得10
6秒前
ybigwhite应助猛犸象冲冲冲采纳,获得20
7秒前
完美世界应助坚持坚持采纳,获得10
7秒前
热心冷亦完成签到,获得积分10
8秒前
8秒前
海带拳大力士完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123189
求助须知:如何正确求助?哪些是违规求助? 4327690
关于积分的说明 13485306
捐赠科研通 4161935
什么是DOI,文献DOI怎么找? 2281094
邀请新用户注册赠送积分活动 1282577
关于科研通互助平台的介绍 1221658