公制(单位)
相似性(几何)
像素
人工智能
数学
计算机科学
模式识别(心理学)
计量经济学
图像(数学)
业务
营销
作者
Anders Larsen,Søren Kaae Sønderby,Hugo Larochelle,Ole Winther
出处
期刊:Cornell University - arXiv
日期:2015-01-01
被引量:859
标识
DOI:10.48550/arxiv.1512.09300
摘要
We present an autoencoder that leverages learned representations to better measure similarities in data space. By combining a variational autoencoder with a generative adversarial network we can use learned feature representations in the GAN discriminator as basis for the VAE reconstruction objective. Thereby, we replace element-wise errors with feature-wise errors to better capture the data distribution while offering invariance towards e.g. translation. We apply our method to images of faces and show that it outperforms VAEs with element-wise similarity measures in terms of visual fidelity. Moreover, we show that the method learns an embedding in which high-level abstract visual features (e.g. wearing glasses) can be modified using simple arithmetic.
科研通智能强力驱动
Strongly Powered by AbleSci AI