清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Large Scale Distributed Deep Networks

计算机科学 深度学习 人工智能 异步通信 随机梯度下降算法 深层神经网络 人工神经网络 机器学习 比例(比率) 分布式计算 任务(项目管理) 特征(语言学) 光学(聚焦) 计算机网络 语言学 哲学 物理 管理 量子力学 光学 经济
作者
Jay B. Dean,Greg S. Corrado,Rajat Monga,Kai Chen,Matthieu Devin,M. Mao,Marc’Aurelio Ranzato,Andrew Senior,Paul A. Tucker,Ke Yang,Quoc V. Le,Andrew Y. Ng
出处
期刊:Neural Information Processing Systems 卷期号:25: 1223-1231 被引量:3005
摘要

Recent work in unsupervised feature learning and deep learning has shown that being able to train large models can dramatically improve performance. In this paper, we consider the problem of training a deep network with billions of parameters using tens of thousands of CPU cores. We have developed a software framework called DistBelief that can utilize computing clusters with thousands of machines to train large models. Within this framework, we have developed two algorithms for large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic gradient descent procedure supporting a large number of model replicas, and (ii) Sandblaster, a framework that supports a variety of distributed batch optimization procedures, including a distributed implementation of L-BFGS. Downpour SGD and Sandblaster L-BFGS both increase the scale and speed of deep network training. We have successfully used our system to train a deep network 30x larger than previously reported in the literature, and achieves state-of-the-art performance on ImageNet, a visual object recognition task with 16 million images and 21k categories. We show that these same techniques dramatically accelerate the training of a more modestly- sized deep network for a commercial speech recognition service. Although we focus on and report performance of these methods as applied to training large neural networks, the underlying algorithms are applicable to any gradient-based machine learning algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
DarkPegasus完成签到,获得积分10
5秒前
1yyyyyy发布了新的文献求助10
9秒前
17秒前
24秒前
称心的晓霜完成签到,获得积分10
44秒前
47秒前
48秒前
量子星尘发布了新的文献求助10
51秒前
52秒前
1分钟前
1分钟前
1分钟前
拼搏问薇完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
supermaltose完成签到,获得积分10
1分钟前
1分钟前
yyds完成签到,获得积分0
1分钟前
1分钟前
2分钟前
科研狗的春天完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
輕瘋发布了新的文献求助10
2分钟前
輕瘋完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
葛力完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732460
求助须知:如何正确求助?哪些是违规求助? 5339547
关于积分的说明 15322262
捐赠科研通 4878002
什么是DOI,文献DOI怎么找? 2620838
邀请新用户注册赠送积分活动 1570005
关于科研通互助平台的介绍 1526699