Pathological myopia classification with simultaneous lesion segmentation using deep learning

人工智能 分割 计算机科学 卷积神经网络 眼底(子宫) 模式识别(心理学) 视盘 人口 计算机视觉 图像分割 Sørensen–骰子系数 视网膜 医学 眼科 环境卫生
作者
Ruben Hemelings,Bart Elen,Matthew B. Blaschko,Julie A. Jacob,Ingeborg Stalmans,Patrick De Boever
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:199: 105920-105920 被引量:49
标识
DOI:10.1016/j.cmpb.2020.105920
摘要

Pathological myopia (PM) is the seventh leading cause of blindness, with a reported global prevalence up to 3%. Early and automated PM detection from fundus images could aid to prevent blindness in a world population that is characterized by a rising myopia prevalence. We aim to assess the use of convolutional neural networks (CNNs) for the detection of PM and semantic segmentation of myopia-induced lesions from fundus images on a recently introduced reference data set. This investigation reports on the results of CNNs developed for the recently introduced Pathological Myopia (PALM) dataset, which consists of 1200 images. Our CNN bundles lesion segmentation and PM classification, as the two tasks are heavily intertwined. Domain knowledge is also inserted through the introduction of a new Optic Nerve Head (ONH)-based prediction enhancement for the segmentation of atrophy and fovea localization. Finally, we are the first to approach fovea localization using segmentation instead of detection or regression models. Evaluation metrics include area under the receiver operating characteristic curve (AUC) for PM detection, Euclidean distance for fovea localization, and Dice and F1 metrics for the semantic segmentation tasks (optic disc, retinal atrophy and retinal detachment). Models trained with 400 available training images achieved an AUC of 0.9867 for PM detection, and a Euclidean distance of 58.27 pixels on the fovea localization task, evaluated on a test set of 400 images. Dice and F1 metrics for semantic segmentation of lesions scored 0.9303 and 0.9869 on optic disc, 0.8001 and 0.9135 on retinal atrophy, and 0.8073 and 0.7059 on retinal detachment, respectively. We report a successful approach for a simultaneous classification of pathological myopia and segmentation of associated lesions. Our work was acknowledged with an award in the context of the “Pathological Myopia detection from retinal images” challenge held during the IEEE International Symposium on Biomedical Imaging (April 2019). Considering that (pathological) myopia cases are often identified as false positives and negatives in glaucoma deep learning models, we envisage that the current work could aid in future research to discriminate between glaucomatous and highly-myopic eyes, complemented by the localization and segmentation of landmarks such as fovea, optic disc and atrophy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助坦率黑米采纳,获得10
刚刚
山止川行完成签到 ,获得积分10
刚刚
科研通AI2S应助syy采纳,获得10
1秒前
2秒前
加菲丰丰应助俭朴的小之采纳,获得20
2秒前
传奇3应助Rainbow采纳,获得10
3秒前
Jia发布了新的文献求助10
3秒前
3秒前
星野先生完成签到,获得积分10
3秒前
3秒前
4秒前
小二郎应助Ann采纳,获得10
5秒前
简单的雅蕊完成签到,获得积分10
5秒前
Lucas应助小李采纳,获得10
7秒前
迷路访云发布了新的文献求助10
7秒前
8秒前
飘逸星影发布了新的文献求助10
9秒前
9秒前
浮世发布了新的文献求助10
9秒前
10秒前
英俊的铭应助简单的雅蕊采纳,获得30
11秒前
Cao完成签到 ,获得积分10
11秒前
豆沙包关注了科研通微信公众号
12秒前
独爱小新发布了新的文献求助10
12秒前
14秒前
诚心的乌冬面完成签到 ,获得积分10
14秒前
黎明发布了新的文献求助10
14秒前
个性的紫菜应助DSUNNY采纳,获得20
16秒前
以菱完成签到,获得积分10
16秒前
wuzhizhiya应助wuming7890采纳,获得10
16秒前
16秒前
17秒前
17秒前
七哒蹦发布了新的文献求助10
17秒前
人机一号发布了新的文献求助10
17秒前
八块腹肌完成签到 ,获得积分10
18秒前
独爱小新完成签到,获得积分20
19秒前
超人不会飞完成签到 ,获得积分10
19秒前
是然宝啊完成签到,获得积分10
20秒前
Rainbow发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149647
求助须知:如何正确求助?哪些是违规求助? 2800710
关于积分的说明 7841396
捐赠科研通 2458270
什么是DOI,文献DOI怎么找? 1308367
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706