Porous silicon–graphene–carbon composite as high performance anode material for lithium ion batteries

石墨烯 材料科学 阳极 扫描电子显微镜 复合数 化学工程 多孔硅 法拉第效率 化学气相沉积 氧化物 碳纤维 锂(药物) 拉曼光谱 透射电子显微镜 复合材料 纳米技术 多孔性 电极 化学 光电子学 冶金 物理化学 内分泌学 医学 工程类 物理 光学
作者
Yuehua Huang,Jing Luo,Jiao Peng,Minhao Shi,Xingxing Li,Xianyou Wang,Baobao Chang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:27: 101075-101075 被引量:46
标识
DOI:10.1016/j.est.2019.101075
摘要

The porous silicon-graphene-carbon (SGC) composite is prepared by freeze-drying and chemical vapor deposition (CVD) process with commercially available nano-silicon, phenolic resin and graphene oxide as raw materials. The self-assembly process makes the nano-silicon into a porous structure and uniform recombination with the graphene oxide, and finally a nano-carbon layer is coated on the surface of the SGC composite by a CVD process. The composition, morphology and pore properties of SGC composite are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and pore size analysis. The nano-carbon layer on the surface of the SGC is examined by transmission electron microscopy (TEM) and Raman spectrometer. The contents of C, Si and O in precursor and SGC are analyzed by X-Ray Fluorescence (XRF), and the electrochemical performances of composite material are analyzed by half-cell and full-cell experiments. The results show that the SGC composite is porous structure with the average pore size of 20–30 nm, and the surface of the porous silicon-graphene is coated by a thickness of 5 nm carbon layers. The reversible capacity and initial coulombic efficiency (ICE) of the SGC are 2180 mAh g−1 and 79.3%. The capacity retention is higher than 70.1% after 100 charge/discharge cycles by the half-cell experiment; and the capacity of the composite anode is still as high as 550 m Ah g−1 after 820 charge/discharge cycles by full-cell experiment. Therefore, the structure design strategy of the composite is beneficial to buffer the volume effect of nano-silicon, prevent iterative growth of the SEI film and boost the electrochemical performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助yyj采纳,获得10
刚刚
马静雨发布了新的文献求助10
刚刚
云游归尘发布了新的文献求助10
1秒前
2秒前
111发布了新的文献求助10
2秒前
寰宇完成签到,获得积分10
2秒前
2秒前
3秒前
花田雨桐发布了新的文献求助10
3秒前
3秒前
小马甲应助lieditongxu采纳,获得10
3秒前
Jenny应助yan123采纳,获得10
4秒前
狂野的以珊完成签到,获得积分10
4秒前
4秒前
a1oft发布了新的文献求助10
5秒前
5秒前
5秒前
笨笨的不斜完成签到,获得积分10
5秒前
xtqgyy发布了新的文献求助10
5秒前
6秒前
Cat完成签到,获得积分0
6秒前
科研小菜完成签到,获得积分10
7秒前
江南烟雨如笙完成签到,获得积分10
7秒前
7秒前
stt关闭了stt文献求助
7秒前
8秒前
yangang发布了新的文献求助10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
zhui发布了新的文献求助10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
文献缺缺应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794