Parallel Signal Processing of a Wireless Pressure‐Sensing Platform Combined with Machine‐Learning‐Based Cognition, Inspired by the Human Somatosensory System

材料科学 信号(编程语言) 认知 无线 信号处理 计算机科学 人机系统 体感系统 人工智能 纳米技术 神经科学 计算机硬件 数字信号处理 生物 电信 程序设计语言
作者
Gunhee Lee,Jin‐Kwan Park,Junyoung Byun,Jun Chang Yang,Se Young Kwon,Chobi Kim,Chorom Jang,Joo Yong Sim,Jong‐Gwan Yook,Steve Park
出处
期刊:Advanced Materials [Wiley]
卷期号:32 (8) 被引量:51
标识
DOI:10.1002/adma.201906269
摘要

Inspired by the human somatosensory system, pressure applied to multiple pressure sensors is received in parallel and combined into a representative signal pattern, which is subsequently processed using machine learning. The pressure signals are combined using a wireless system, where each sensor is assigned a specific resonant frequency on the reflection coefficient (S11 ) spectrum, and the applied pressure changes the magnitude of the S11 pole with minimal frequency shift. This allows the differentiation and identification of the pressure applied to each sensor. The pressure sensor consists of polypyrrole-coated microstructured poly(dimethylsiloxane) placed on top of electrodes, operating as a capacitive sensor. The high dielectric constant of polypyrrole enables relatively high pressure-sensing performance. The coils are vertically stacked to enable the reader to receive the signals from all of the sensors simultaneously at a single location, analogous to the junction between neighboring primary neurons to a secondary neuron. Here, the stacking order is important to minimize the interference between the coils. Furthermore, convolutional neural network (CNN)-based machine learning is utilized to predict the applied pressure of each sensor from unforeseen S11 spectra. With increasing training, the prediction accuracy improves (with mean squared error of 0.12), analogous to humans' cognitive learning ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助hahada采纳,获得30
1秒前
1秒前
2秒前
清爽语柳发布了新的文献求助10
2秒前
爆米花应助hudiefeifei306采纳,获得30
5秒前
Moonlight发布了新的文献求助10
5秒前
琪琪发布了新的文献求助10
5秒前
韵寒发布了新的文献求助10
5秒前
青青子衿发布了新的文献求助10
7秒前
8秒前
完美的秋珊完成签到,获得积分10
11秒前
纯情的尔槐完成签到,获得积分20
12秒前
12秒前
Hello应助Moonlight采纳,获得10
13秒前
13秒前
庞天兴完成签到,获得积分10
14秒前
锖青关注了科研通微信公众号
16秒前
17秒前
18秒前
19秒前
英姑应助北阳采纳,获得10
21秒前
22秒前
22秒前
23秒前
烟花应助可可萝oxo采纳,获得10
26秒前
26秒前
辛勤晓旋发布了新的文献求助10
26秒前
31秒前
大模型应助大肥猫采纳,获得10
31秒前
33秒前
33秒前
34秒前
hahada发布了新的文献求助30
35秒前
kam完成签到,获得积分20
35秒前
搞怪藏今完成签到 ,获得积分10
35秒前
36秒前
36秒前
38秒前
Ryki应助小小宝采纳,获得10
39秒前
潇潇发布了新的文献求助10
39秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Development of general formulas for bolted flanges, by E.O. Waters [and others] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3255426
求助须知:如何正确求助?哪些是违规求助? 2897812
关于积分的说明 8298285
捐赠科研通 2566901
什么是DOI,文献DOI怎么找? 1394080
科研通“疑难数据库(出版商)”最低求助积分说明 652718
邀请新用户注册赠送积分活动 630339