端粒酶
端粒
谢尔特林
细胞生物学
生物
端粒酶逆转录酶
过程性
化学
作者
Ranjodh Sandhu,Madhav Sharma,Derek Wei,Lifeng Xu
标识
DOI:10.1101/2020.12.07.412684
摘要
In addition to mediating telomerase recruitment, shelterin protein TPP1 also stimulates telomerase processivity. Assessing the in vivo significance of the latter role of TPP1 has been difficult, as TPP1 mutations that perturb telomerase function tend to abolish both telomerase recruitment and processivity. We sought to separate the two activities of TPP1 in regulating telomerase by considering a structure-guided mutagenesis study on the S. cerevisiae telomerase-associated Est3 protein, which revealed a TELR surface region on Est3 that regulates telomerase function via an unknown mechanism without affecting the interaction between Est3 and telomerase. Here, we show that mutations within the structurally conserved TELR region on TPP1 impaired telomerase processivity while leaving telomerase recruitment unperturbed, hence uncoupling the two roles of TPP1 in regulating telomerase. Telomeres in cell lines containing homozygous TELR mutations progressively shortened to a critical length that caused cellular senescence, despite the presence of abundant telomerase in these cells. Our findings not only demonstrate that telomerase processivity can be regulated by TPP1, in a process separable from its role in recruiting telomerase to telomeres, but also establish that the in vivo stimulation of telomerase processivity by TPP1 is critical for telomere length homeostasis and long-term cell viability.
科研通智能强力驱动
Strongly Powered by AbleSci AI