Machine learning for predictive data analytics in medicine: A review illustrated by cardiovascular and nuclear medicine examples

机器学习 人工智能 支持向量机 预测分析 大数据 人工神经网络 分析 计算机科学 领域(数学) 监督学习 数据分析 医学 数据挖掘 数学 纯数学
作者
Antoine Jamin,Pierre Ábrahám,Anne Humeau-Heurtier
出处
期刊:Clinical Physiology and Functional Imaging [Wiley]
卷期号:41 (2): 113-127 被引量:9
标识
DOI:10.1111/cpf.12686
摘要

The evidence-based medicine allows the physician to evaluate the risk-benefit ratio of a treatment through setting and data. Risk-based choices can be done by the doctor using different information. With the emergence of new technologies, a large amount of data is recorded offering interesting perspectives with machine learning for predictive data analytics. Machine learning is an ensemble of methods that process data to model a learning problem. Supervised machine learning algorithms consist in using annotated data to construct the model. This category allows to solve prediction data analytics problems. In this paper, we detail the use of supervised machine learning algorithms for predictive data analytics problems in medicine. In the medical field, data can be split into two categories: medical images and other data. For brevity, our review deals with any kind of medical data excluding images. In this article, we offer a discussion around four supervised machine learning approaches: information-based, similarity-based, probability-based and error-based approaches. Each method is illustrated with detailed cardiovascular and nuclear medicine examples. Our review shows that model ensemble (ME) and support vector machine (SVM) methods are the most popular. SVM, ME and artificial neural networks often lead to better results than those given by other algorithms. In the coming years, more studies, more data, more tools and more methods will, for sure, be proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助怪味薯片采纳,获得10
1秒前
sbc发布了新的文献求助10
1秒前
1秒前
祭礼之龙完成签到,获得积分10
1秒前
忧虑的电话完成签到,获得积分10
1秒前
1秒前
1秒前
3秒前
zhaojing9532应助科研通管家采纳,获得10
3秒前
Hedy应助科研通管家采纳,获得20
3秒前
田様应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得30
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研小菜鸡采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
w_应助Blue采纳,获得20
4秒前
无花果应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
sonny应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
kk发布了新的文献求助10
5秒前
打打应助科研通管家采纳,获得10
5秒前
郝从安完成签到,获得积分10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
赘婿应助太叔夜南采纳,获得10
6秒前
方法法国衣服头发完成签到,获得积分10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
hy完成签到,获得积分10
6秒前
大个应助PeterParker采纳,获得10
6秒前
Hello应助嗷嗷嗷啊采纳,获得10
7秒前
虚心十三发布了新的文献求助10
7秒前
沉静盼易发布了新的文献求助10
8秒前
烟花应助CLAY采纳,获得10
8秒前
光电发布了新的文献求助10
8秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053115
求助须知:如何正确求助?哪些是违规求助? 2710358
关于积分的说明 7421333
捐赠科研通 2354967
什么是DOI,文献DOI怎么找? 1246568
科研通“疑难数据库(出版商)”最低求助积分说明 606146
版权声明 595975