Full Convolutional Neural Network Based on Multi-Scale Feature Fusion for the Class Imbalance Remote Sensing Image Classification

计算机科学 模式识别(心理学) 遥感 人工智能 卷积神经网络 图像(数学) 交叉口(航空) 比例(比率) 样品(材料) 卷积(计算机科学) 科恩卡帕 特征(语言学) 人工神经网络 机器学习 地理 地图学 哲学 化学 色谱法 语言学
作者
Yuanyuan Ren,Xianfeng Zhang,Yongjian Ma,Qiyuan Yang,Chuanjian Wang,Hailong Liu,Quan Qi
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:12 (21): 3547-3547 被引量:30
标识
DOI:10.3390/rs12213547
摘要

Remote sensing image segmentation with samples imbalance is always one of the most important issues. Typically, a high-resolution remote sensing image has the characteristics of high spatial resolution and low spectral resolution, complex large-scale land covers, small class differences for some land covers, vague foreground, and imbalanced distribution of samples. However, traditional machine learning algorithms have limitations in deep image feature extraction and dealing with sample imbalance issue. In the paper, we proposed an improved full-convolution neural network, called DeepLab V3+, with loss function based solution of samples imbalance. In addition, we select Sentinel-2 remote sensing images covering the Yuli County, Bayingolin Mongol Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China as data sources, then a typical region image dataset is built by data augmentation. The experimental results show that the improved DeepLab V3+ model can not only utilize the spectral information of high-resolution remote sensing images, but also consider its rich spatial information. The classification accuracy of the proposed method on the test dataset reaches 97.97%. The mean Intersection-over-Union reaches 87.74%, and the Kappa coefficient 0.9587. The work provides methodological guidance to sample imbalance correction, and the established data resource can be a reference to further study in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助greenbiloba采纳,获得10
1秒前
丘比特应助丁真先生采纳,获得10
1秒前
微风完成签到,获得积分10
2秒前
7秒前
9秒前
10秒前
lhzm8290发布了新的文献求助10
11秒前
小山隹发布了新的文献求助10
11秒前
科研通AI5应助有魅力冰岚采纳,获得30
12秒前
丁真先生发布了新的文献求助10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
猪猪hero应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
慕青应助lkf采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
江璃完成签到,获得积分10
17秒前
17秒前
17秒前
Akim应助土豪的飞荷采纳,获得10
19秒前
19秒前
失眠惊蛰完成签到,获得积分10
23秒前
25秒前
25秒前
26秒前
Sjingjia完成签到,获得积分10
27秒前
NexusExplorer应助追寻桐采纳,获得10
28秒前
29秒前
YOLK97完成签到,获得积分10
30秒前
30秒前
小李完成签到,获得积分20
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Illustrated Veterinary Anatomical Nomenclature 2000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770207
求助须知:如何正确求助?哪些是违规求助? 3315298
关于积分的说明 10175159
捐赠科研通 3030309
什么是DOI,文献DOI怎么找? 1662801
邀请新用户注册赠送积分活动 795099
科研通“疑难数据库(出版商)”最低求助积分说明 756560