清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A near-real-time approach for monitoring forest disturbance using Landsat time series: stochastic continuous change detection

扰动(地质) 遥感 计算机科学 时间序列 环境科学 变更检测 卫星 地理 机器学习 生物 工程类 航空航天工程 古生物学
作者
Ye Su,John Rogan,Zhe Zhu,J. Ronald Eastman
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:252: 112167-112167 被引量:44
标识
DOI:10.1016/j.rse.2020.112167
摘要

Forest disturbances greatly affect the ecological functioning of natural forests. Timely information regarding extent, timing and magnitude of forest disturbance events is crucial for effective disturbance management strategies. Yet, we still lack accurate, near-real-time and high-performance remote sensing tools for monitoring abrupt and subtle forest disturbances. This study presents a new approach called ‘Stochastic Continuous Change Detection (S-CCD)’ using a dense Landsat data time series. S-CCD improves upon the ‘COntinuous monitoring of Land Disturbance (COLD)’ approach by incorporating a mathematical tool called the ‘state space model’, which treats trends and seasonality as stochastic processes, allowing for modeling temporal dynamics of satellite observations in a recursive way. The quantitative accuracy assessment is evaluated based on 3782 Landsat-based disturbance reference plots (30 m) from a probability sampling distributed throughout the Conterminous United States. Validation results show that the overall accuracy (best F1 score) of S-CCD is 0.793 with 20% omission error and 21% commission error, slightly higher than that of COLD (0.789). Two disturbance sites respectively associated with wildfire and insect disturbances are used for qualitative map-based analysis. Both quantitative and qualitative analyses suggest that S-CCD achieves fewer omission errors than COLD for detecting those disturbances with subtle/gradual spectral change. In addition, S-CCD facilitates a better real-time monitoring, benefited by its complete recursive manner and a shorter lag for confirming disturbance than COLD (126 days vs. 166 days for alerting 50% disturbance events), and reached up to ~4.4 times speedup for computation. This research addresses the need for near-real-time monitoring and large-scale mapping of forest health and offers a new approach for operationally performing change detection tasks from dense Landsat-based time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wangye完成签到 ,获得积分10
4秒前
16秒前
克泷完成签到 ,获得积分10
16秒前
Polymer72应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Polymer72应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
Polymer72应助科研通管家采纳,获得10
20秒前
菜菜小糖块发布了新的文献求助100
21秒前
42秒前
46秒前
满天星辰独览完成签到 ,获得积分10
1分钟前
一个小胖子完成签到,获得积分10
1分钟前
菜菜小糖块完成签到,获得积分10
1分钟前
小新完成签到 ,获得积分10
1分钟前
小强完成签到 ,获得积分10
1分钟前
niko完成签到 ,获得积分10
1分钟前
吐丝麵包应助木木采纳,获得10
1分钟前
方白秋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
SCUWJ完成签到,获得积分20
2分钟前
青出于蓝蔡完成签到,获得积分10
2分钟前
Polymer72应助科研通管家采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
Polymer72应助科研通管家采纳,获得10
2分钟前
Polymer72应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
白华苍松发布了新的文献求助10
3分钟前
cy0824完成签到 ,获得积分10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397920
求助须知:如何正确求助?哪些是违规求助? 3006928
关于积分的说明 8823526
捐赠科研通 2694272
什么是DOI,文献DOI怎么找? 1475776
科研通“疑难数据库(出版商)”最低求助积分说明 682508
邀请新用户注册赠送积分活动 675950