Improving the Diagnostic Accuracy of Breast BI-RADS 4 Microcalcification-Only Lesions Using Contrast-Enhanced Mammography

医学 乳腺摄影术 钙化 乳房成像 放射科 微钙化 双雷达 对比度(视觉) 医学诊断 乳腺癌 接收机工作特性 核医学 癌症 内科学 人工智能 计算机科学
作者
Rong Long,Kun Cao,Min Cao,Xiao-Ting Li,Fei Gao,Fan-Dong Zhang,Yizhou Yu,Ying‐Shi Sun
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:21 (3): 256-262.e2 被引量:10
标识
DOI:10.1016/j.clbc.2020.10.011
摘要

Contrast-enhanced mammography (CEM) is a novel breast imaging technique that can provide additional information of breast tissue blood supply. This study aimed to test the possibility of CEM in improving the diagnostic accuracy of Breast Imaging Reporting and Data System (BI-RADS) 4 calcification-only lesions with consideration of morphology and distribution.Data of patients with suspicious malignant calcification-only lesions (BI-RADS 4) on low-energy CEM and proved pathologic diagnoses were retrospectively collected. Two junior radiologists independently reviewed the two sets of CEM images, low-energy images (LE) to describe the calcifications by morphology and distribution type, and recombined images (CE) to record the presence of enhancement. Low-risk and high-risk groups were divided by calcification morphology, distribution, and both, respectively. Positive predictive values and misdiagnosis rates (MDR) were compared between LE-only reading and CE reading. Diagnostic performance was also tested using machine learning method.The study included 74 lesions (26 malignant and 48 benign). Positive predictive values were significantly higher and MDRs were significantly lower using CE images than using LE alone for both the low-risk morphology type and low-risk distribution type (P < .05). MDRs were significantly lower when using CE images (18.18%-24.00%) than using LE images alone in low-risk group (76.36%-80.00%) (P < .05). Using a machine learning method, significant improvements in the area under the receiver operating characteristic curve were observed in both low-risk and high-risk groups.CEM has the potential to aid in the diagnosis of BI-RADS 4 calcification-only lesions; in particular, those presented as low risk in morphology and/or distribution may benefit more.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慢慢发布了新的文献求助10
1秒前
2秒前
善学以致用应助ccc采纳,获得10
2秒前
阳阳完成签到,获得积分10
2秒前
xl完成签到 ,获得积分10
3秒前
求知的周发布了新的文献求助30
4秒前
meibeiwu关注了科研通微信公众号
4秒前
HZH发布了新的文献求助10
5秒前
小蘑菇完成签到 ,获得积分10
5秒前
nb小子发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
David发布了新的文献求助10
7秒前
团团完成签到,获得积分10
7秒前
zwx发布了新的文献求助10
8秒前
怡然的寻桃关注了科研通微信公众号
9秒前
今天炒鱿鱼完成签到,获得积分20
9秒前
电池小能手完成签到,获得积分10
10秒前
Bubble_bei完成签到 ,获得积分10
11秒前
董恋风完成签到,获得积分10
12秒前
大模型应助一一采纳,获得10
13秒前
13秒前
14秒前
海鑫王完成签到,获得积分10
15秒前
mao关注了科研通微信公众号
15秒前
Attendre完成签到 ,获得积分10
15秒前
爆米花应助Faith采纳,获得10
16秒前
傲娇的月亮完成签到,获得积分10
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
田様应助慢慢采纳,获得10
17秒前
17秒前
劼大大完成签到,获得积分10
17秒前
执着的草丛完成签到,获得积分10
17秒前
17秒前
wanci应助zwx采纳,获得10
18秒前
zwx发布了新的文献求助20
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049