Improving the Diagnostic Accuracy of Breast BI-RADS 4 Microcalcification-Only Lesions Using Contrast-Enhanced Mammography

医学 乳腺摄影术 钙化 乳房成像 放射科 微钙化 双雷达 对比度(视觉) 医学诊断 乳腺癌 接收机工作特性 核医学 癌症 内科学 人工智能 计算机科学
作者
Rong Long,Kun Cao,Min Cao,Xiao-Ting Li,Fei Gao,Fan-Dong Zhang,Yizhou Yu,Ying‐Shi Sun
出处
期刊:Clinical Breast Cancer [Elsevier BV]
卷期号:21 (3): 256-262.e2 被引量:10
标识
DOI:10.1016/j.clbc.2020.10.011
摘要

Contrast-enhanced mammography (CEM) is a novel breast imaging technique that can provide additional information of breast tissue blood supply. This study aimed to test the possibility of CEM in improving the diagnostic accuracy of Breast Imaging Reporting and Data System (BI-RADS) 4 calcification-only lesions with consideration of morphology and distribution.Data of patients with suspicious malignant calcification-only lesions (BI-RADS 4) on low-energy CEM and proved pathologic diagnoses were retrospectively collected. Two junior radiologists independently reviewed the two sets of CEM images, low-energy images (LE) to describe the calcifications by morphology and distribution type, and recombined images (CE) to record the presence of enhancement. Low-risk and high-risk groups were divided by calcification morphology, distribution, and both, respectively. Positive predictive values and misdiagnosis rates (MDR) were compared between LE-only reading and CE reading. Diagnostic performance was also tested using machine learning method.The study included 74 lesions (26 malignant and 48 benign). Positive predictive values were significantly higher and MDRs were significantly lower using CE images than using LE alone for both the low-risk morphology type and low-risk distribution type (P < .05). MDRs were significantly lower when using CE images (18.18%-24.00%) than using LE images alone in low-risk group (76.36%-80.00%) (P < .05). Using a machine learning method, significant improvements in the area under the receiver operating characteristic curve were observed in both low-risk and high-risk groups.CEM has the potential to aid in the diagnosis of BI-RADS 4 calcification-only lesions; in particular, those presented as low risk in morphology and/or distribution may benefit more.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助从容的盼晴采纳,获得10
1秒前
1秒前
Hello应助安静啤酒采纳,获得10
3秒前
丫头完成签到 ,获得积分10
6秒前
hyc发布了新的文献求助10
6秒前
hizj发布了新的文献求助10
6秒前
风趣的鸭子完成签到,获得积分10
6秒前
xty发布了新的文献求助10
6秒前
7秒前
7秒前
嘿小黑发布了新的文献求助10
8秒前
一品真意完成签到,获得积分10
9秒前
华仔应助赫连紫采纳,获得10
9秒前
xty完成签到,获得积分10
11秒前
谨慎的哈密瓜完成签到,获得积分10
12秒前
野猪大王完成签到 ,获得积分10
12秒前
小小旭呀完成签到,获得积分10
12秒前
bingbing发布了新的文献求助10
13秒前
狂野乌冬面完成签到 ,获得积分10
13秒前
土豆晴发布了新的文献求助10
13秒前
开心友儿发布了新的文献求助10
13秒前
wxy1111完成签到 ,获得积分10
16秒前
SciGPT应助LLY采纳,获得10
16秒前
素龙完成签到 ,获得积分10
16秒前
xhs2003完成签到,获得积分20
17秒前
ddd完成签到,获得积分10
17秒前
健忘傲柏完成签到,获得积分10
18秒前
lzx应助兴奋的万声采纳,获得100
18秒前
不知似若完成签到,获得积分10
19秒前
19秒前
张雷应助酸菜采纳,获得20
21秒前
Nikola完成签到 ,获得积分10
21秒前
22秒前
李健的小迷弟应助madwup采纳,获得10
22秒前
阿月完成签到,获得积分10
22秒前
22秒前
zhh完成签到,获得积分10
23秒前
24秒前
李健应助linllll采纳,获得10
24秒前
bingbing完成签到,获得积分20
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966082
求助须知:如何正确求助?哪些是违规求助? 3511457
关于积分的说明 11158333
捐赠科研通 3246107
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324