Improving the Diagnostic Accuracy of Breast BI-RADS 4 Microcalcification-Only Lesions Using Contrast-Enhanced Mammography

医学 乳腺摄影术 钙化 乳房成像 放射科 微钙化 双雷达 对比度(视觉) 医学诊断 乳腺癌 接收机工作特性 核医学 癌症 内科学 人工智能 计算机科学
作者
Rong Long,Kun Cao,Min Cao,Xiao-Ting Li,Fei Gao,Fan-Dong Zhang,Yizhou Yu,Ying‐Shi Sun
出处
期刊:Clinical Breast Cancer [Elsevier BV]
卷期号:21 (3): 256-262.e2 被引量:10
标识
DOI:10.1016/j.clbc.2020.10.011
摘要

Contrast-enhanced mammography (CEM) is a novel breast imaging technique that can provide additional information of breast tissue blood supply. This study aimed to test the possibility of CEM in improving the diagnostic accuracy of Breast Imaging Reporting and Data System (BI-RADS) 4 calcification-only lesions with consideration of morphology and distribution.Data of patients with suspicious malignant calcification-only lesions (BI-RADS 4) on low-energy CEM and proved pathologic diagnoses were retrospectively collected. Two junior radiologists independently reviewed the two sets of CEM images, low-energy images (LE) to describe the calcifications by morphology and distribution type, and recombined images (CE) to record the presence of enhancement. Low-risk and high-risk groups were divided by calcification morphology, distribution, and both, respectively. Positive predictive values and misdiagnosis rates (MDR) were compared between LE-only reading and CE reading. Diagnostic performance was also tested using machine learning method.The study included 74 lesions (26 malignant and 48 benign). Positive predictive values were significantly higher and MDRs were significantly lower using CE images than using LE alone for both the low-risk morphology type and low-risk distribution type (P < .05). MDRs were significantly lower when using CE images (18.18%-24.00%) than using LE images alone in low-risk group (76.36%-80.00%) (P < .05). Using a machine learning method, significant improvements in the area under the receiver operating characteristic curve were observed in both low-risk and high-risk groups.CEM has the potential to aid in the diagnosis of BI-RADS 4 calcification-only lesions; in particular, those presented as low risk in morphology and/or distribution may benefit more.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洪亭完成签到 ,获得积分10
刚刚
Grinder发布了新的文献求助10
1秒前
幽默的尔蓝完成签到,获得积分10
1秒前
科研通AI2S应助李存采纳,获得10
2秒前
救救我把发布了新的文献求助10
2秒前
Jasper应助小小K采纳,获得10
2秒前
星星完成签到,获得积分10
2秒前
打打应助拼搏山槐采纳,获得10
2秒前
xiaozhou发布了新的文献求助10
2秒前
七七发布了新的文献求助10
2秒前
缥缈凡旋完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
赘婿应助Erintsai采纳,获得10
3秒前
所所应助日初采纳,获得10
3秒前
w123发布了新的文献求助10
3秒前
liyk完成签到,获得积分10
4秒前
桐桐应助沉默的夏天采纳,获得10
4秒前
5秒前
猪猪hero应助卜大大采纳,获得10
5秒前
文艺的涵山完成签到 ,获得积分10
5秒前
天天快乐应助XGuo采纳,获得10
6秒前
所所应助桃桃采纳,获得10
6秒前
Cactus应助Grinder采纳,获得10
6秒前
7秒前
科研通AI2S应助liyk采纳,获得10
7秒前
我爱科研完成签到,获得积分10
8秒前
8秒前
徐若楠发布了新的文献求助10
8秒前
时尚俊驰发布了新的文献求助10
8秒前
8秒前
8秒前
署丽盼发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
不安的流沙关注了科研通微信公众号
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426