Improving the Diagnostic Accuracy of Breast BI-RADS 4 Microcalcification-Only Lesions Using Contrast-Enhanced Mammography

医学 乳腺摄影术 钙化 乳房成像 放射科 微钙化 双雷达 对比度(视觉) 医学诊断 乳腺癌 接收机工作特性 核医学 癌症 内科学 人工智能 计算机科学
作者
Rong Long,Kun Cao,Min Cao,Xiao-Ting Li,Fei Gao,Fan-Dong Zhang,Yizhou Yu,Ying‐Shi Sun
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:21 (3): 256-262.e2 被引量:10
标识
DOI:10.1016/j.clbc.2020.10.011
摘要

Contrast-enhanced mammography (CEM) is a novel breast imaging technique that can provide additional information of breast tissue blood supply. This study aimed to test the possibility of CEM in improving the diagnostic accuracy of Breast Imaging Reporting and Data System (BI-RADS) 4 calcification-only lesions with consideration of morphology and distribution.Data of patients with suspicious malignant calcification-only lesions (BI-RADS 4) on low-energy CEM and proved pathologic diagnoses were retrospectively collected. Two junior radiologists independently reviewed the two sets of CEM images, low-energy images (LE) to describe the calcifications by morphology and distribution type, and recombined images (CE) to record the presence of enhancement. Low-risk and high-risk groups were divided by calcification morphology, distribution, and both, respectively. Positive predictive values and misdiagnosis rates (MDR) were compared between LE-only reading and CE reading. Diagnostic performance was also tested using machine learning method.The study included 74 lesions (26 malignant and 48 benign). Positive predictive values were significantly higher and MDRs were significantly lower using CE images than using LE alone for both the low-risk morphology type and low-risk distribution type (P < .05). MDRs were significantly lower when using CE images (18.18%-24.00%) than using LE images alone in low-risk group (76.36%-80.00%) (P < .05). Using a machine learning method, significant improvements in the area under the receiver operating characteristic curve were observed in both low-risk and high-risk groups.CEM has the potential to aid in the diagnosis of BI-RADS 4 calcification-only lesions; in particular, those presented as low risk in morphology and/or distribution may benefit more.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobai123456发布了新的文献求助10
刚刚
Eurpides完成签到 ,获得积分10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
529发布了新的文献求助10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得10
1秒前
1秒前
iNk应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
柠檬完成签到 ,获得积分10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
高帮白袜完成签到,获得积分10
2秒前
万能图书馆应助科研通管家采纳,获得100
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
wwwwwnnnnn完成签到,获得积分10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
666666666666666完成签到 ,获得积分10
2秒前
ding应助科研通管家采纳,获得10
2秒前
延陵君应助科研通管家采纳,获得30
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600235
求助须知:如何正确求助?哪些是违规求助? 4685911
关于积分的说明 14840612
捐赠科研通 4675789
什么是DOI,文献DOI怎么找? 2538581
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471162