隐藏字幕
计算机科学
安全性令牌
水准点(测量)
公制(单位)
相似性(几何)
图像(数学)
人工智能
判决
自然语言处理
计算机视觉
模式识别(心理学)
情报检索
经济
大地测量学
计算机安全
地理
运营管理
作者
Hwanhee Lee,Seunghyun Yoon,Franck Dernoncourt,Doo Soon Kim,Trung Bui,Kyomin Jung
标识
DOI:10.18653/v1/2020.eval4nlp-1.4
摘要
In this paper, we propose an evaluation metric for image captioning systems using both image and text information. Unlike the previous methods that rely on textual representations in evaluating the caption, our approach uses visiolinguistic representations. The proposed method generates image-conditioned embeddings for each token using ViLBERT from both generated and reference texts. Then, these contextual embeddings from each of the two sentence-pair are compared to compute the similarity score. Experimental results on three benchmark datasets show that our method correlates significantly better with human judgments than all existing metrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI