已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking

电池(电) 荷电状态 锂(药物) 可靠性(半导体)
作者
Kodjo Senou Rodolphe Mawonou,Akram Eddahech,Didier Dumur,Dominique Beauvois,Emmanuel Godoy
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:484: 229154- 被引量:10
标识
DOI:10.1016/j.jpowsour.2020.229154
摘要

Abstract Electrified vehicles users may expect their vehicle to have a steady autonomy range and available power throughout the lifetime of their cars. The health assessment of Lithium-ion batteries (LIBs), in that regard, represents a critical point for performance evaluation and lifetime prediction. Reliable state-of-health (SoH) assessment is essential to ensure cautious and suitable use of LIBs. To that end, several embedded solutions are proposed in the literature. In this paper, two new aging indicators are developed to enrich the existing diagnosis-based (DB-SoH) solutions. These indicators are based on collected data during charging (CDB-SoH) and driving (DDB-SoH) events overtime. The data are comprised of variables such as distance, speed, temperature, charging power, and more. Both solutions produce reliable state-of-health S o H assessment with a significantly good estimation error. Additionally, a data-driven battery aging prediction using the random forest (RF) algorithm is introduced using actual users’ behavior and ambient conditions. The proposed solution produced an S o H estimation error of 1.27%. Finally, a method for aging factors ranking is proposed. The obtained order is consistent with known aging root causes in the literature and can be used to mitigate fast LIB aging for electrified vehicle applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哆啦的空间站应助FYZS采纳,获得10
刚刚
orixero应助Leehowie采纳,获得10
2秒前
2秒前
宋佳完成签到,获得积分10
5秒前
麻辣鸡丝发布了新的文献求助10
5秒前
悄悄拔尖儿完成签到 ,获得积分10
6秒前
cyt9999完成签到,获得积分10
6秒前
风华正茂完成签到,获得积分10
8秒前
8秒前
GLN完成签到,获得积分10
9秒前
金海完成签到 ,获得积分10
9秒前
点点点完成签到,获得积分10
9秒前
优秀冰真完成签到,获得积分10
11秒前
13秒前
13秒前
称心沁完成签到 ,获得积分10
15秒前
可爱安白完成签到,获得积分10
16秒前
xmn0717完成签到,获得积分10
16秒前
211JZH完成签到 ,获得积分10
18秒前
科研通AI5应助窝恁叠采纳,获得10
19秒前
mbq完成签到,获得积分10
19秒前
幽默赛君完成签到 ,获得积分10
20秒前
禾斗石开通完成签到,获得积分10
21秒前
21秒前
悄悄是心上的肖肖完成签到 ,获得积分10
21秒前
22秒前
认真的寒香完成签到,获得积分10
22秒前
gudujian870928完成签到 ,获得积分10
22秒前
打打应助邢哥哥采纳,获得10
23秒前
坤坤完成签到 ,获得积分10
23秒前
23秒前
抠鼻公主完成签到 ,获得积分10
24秒前
24秒前
努力学习完成签到,获得积分10
24秒前
科科科研发布了新的文献求助10
26秒前
Haki完成签到,获得积分10
26秒前
26秒前
26秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925547
求助须知:如何正确求助?哪些是违规求助? 4195847
关于积分的说明 13031037
捐赠科研通 3967326
什么是DOI,文献DOI怎么找? 2174599
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101517