Effects of organic molecule adsorption and substrate on electronic structure of germanene

日耳曼 六氟苯 材料科学 吸附 化学物理 带隙 分子 密度泛函理论 穆利肯种群分析 计算化学 纳米技术 物理化学 化学 硅烯 有机化学 石墨烯 光电子学
作者
Meixia Xiao,Hao Leng,Haiyang Song,Lei Wang,T. Yao,He Cheng
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:70 (6): 063101-063101 被引量:1
标识
DOI:10.7498/aps.70.20201657
摘要

The development potential of germanene-based integrated electronics originates from its high carrier mobility and compatibility with the existing silicon-based and germanium-based semiconductor industry. However, the small band gap energy band (Dirac point) of germanene greatly impedes its application. Thus, it is necessary to open a sizeable band gap without reducing the carrier mobility for the application in logic circuits. In this study, the effects of organic molecule (benzene or hexafluorobenzene) adsorption and substrate on the atomic structures and electronic properties of germanene under an external electric field are investigated by using density functional theory calculations with van der Waals correction. For benzene/germanene and hexafluorobenzene/germanene systems, four different adsorption sites are considered, with the center of the organic molecules lying directly atop the upper or lower Ge atoms of germanene, in the Ge-Ge bridge center, and on the central hollow ring. Meanwhile, different molecular orientations at each adsorption site are also considered. Thus, there are eight high-symmetry adsorption configurations of the systems, respectively. According to the adsorption energy, we can determine the most stable atomic structures of the above systems. The results show that the organic molecule adsorption can induce the larger buckling height in germanene. Both the adsorption energy and interlayer distance indicate that there is no chemical bond between the organic molecules and germanene. Mulliken population analysis shows that a charge redistribution in the two sublattices in germanene exists since benzene is an electron donor molecule and hexafluorobenzene is an electron acceptor molecule. As a result, the benzene/germanene system exhibits a relatively large band gap (0.036 eV), while hexafluorobenzene/germanene system displays a small band gap (0.005 eV). Under external electric field, germanene with organic molecule adsorption can exhibit a wide range of linear tunable band gaps, which is merely determined by the strength of electric field regardless of its direction. The charge transfer among organic molecules and two sublattices in germanene gradually rises with the increasing the strength of electric field, resulting in the electron density around the sublattices in germanene unequally distributed. Thus, according to the tight-binding model, a larger band gap at the <i>K</i>-point is opened. When germanane (fully hydrogenated germanene HGeH) substrate is applied, the band gaps further widen, where the band gap of benzene/ germanene/germanane system can increase to 0.152 eV, and that of hexafluorobenzene/germanene/germanane system can reach 0.105 eV. The sizable band gap in germanene is created due to the symmetry of two sublattices in germanene destroyed by the dual effects of organic molecule adsorption and substrate. Note that both of organic molecules and substrate are found to non-covalently functionalize the germanene. As the strength of the negative electric field increases, the band gaps can be further modulated effectively. Surprisingly, the band gaps of the above systems can be closed, and reopened under a critical electric field. These features are attributed to the build-in electric field due to the interlayer charge transfer of the systems, which breaks the equivalence between the two sublattices of germanene. More importantly, the high carrier mobility in germanene is still retained to a large extent. These results provide effective and reversible routes to engineering the band gap of germanene for the applications of germanene to field-effect transistor and other nanoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小高同学完成签到,获得积分10
刚刚
红领巾klj完成签到 ,获得积分10
1秒前
喔喔佳佳L完成签到 ,获得积分10
7秒前
小喵完成签到 ,获得积分10
8秒前
鞘皮完成签到,获得积分10
12秒前
widesky777完成签到 ,获得积分0
14秒前
洋洋爱吃枣完成签到 ,获得积分10
26秒前
wwmmyy完成签到 ,获得积分10
33秒前
Tree_完成签到 ,获得积分10
33秒前
xiaowuge完成签到 ,获得积分10
46秒前
Alone离殇完成签到 ,获得积分10
47秒前
52秒前
GU发布了新的文献求助20
57秒前
XS_QI完成签到 ,获得积分10
1分钟前
Xiao完成签到,获得积分10
1分钟前
居蓝完成签到 ,获得积分10
1分钟前
明亮囧完成签到 ,获得积分10
1分钟前
Henry完成签到,获得积分10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
SC完成签到 ,获得积分10
1分钟前
爱静静应助凌代萱采纳,获得10
1分钟前
乐乐应助cnulee采纳,获得10
1分钟前
无与伦比完成签到 ,获得积分10
1分钟前
明天更好完成签到 ,获得积分10
1分钟前
Wang完成签到 ,获得积分10
1分钟前
HCKACECE完成签到 ,获得积分10
1分钟前
南城雨落完成签到,获得积分10
1分钟前
iShine完成签到 ,获得积分10
1分钟前
陶醉书包完成签到 ,获得积分10
1分钟前
柳叶刀完成签到 ,获得积分10
1分钟前
ll完成签到 ,获得积分10
1分钟前
水沝完成签到 ,获得积分10
2分钟前
顺心书琴完成签到,获得积分10
2分钟前
井小浩完成签到 ,获得积分10
2分钟前
xue112完成签到 ,获得积分10
2分钟前
2分钟前
火火火小朋友完成签到 ,获得积分10
2分钟前
cnulee发布了新的文献求助10
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162378
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899832
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142