已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Time-Updated, Parsimonious Model to Predict AKI in Hospitalized Children

医学 重症监护医学
作者
Ibrahim Sandokji,Yu Yamamoto,Aditya Biswas,Tanima Arora,Ugochukwu Ugwuowo,Michael Simonov,Ishan Saran,Melissa Martin,Jeffrey M. Testani,Sherry G. Mansour,Dennis G. Moledina,Jason H. Greenberg,F. Perry Wilson
出处
期刊:Journal of The American Society of Nephrology 卷期号:31 (6): 1348-1357 被引量:43
标识
DOI:10.1681/asn.2019070745
摘要

Timely prediction of AKI in children can allow for targeted interventions, but the wealth of data in the electronic health record poses unique modeling challenges.We retrospectively reviewed the electronic medical records of all children younger than 18 years old who had at least two creatinine values measured during a hospital admission from January 2014 through January 2018. We divided the study population into derivation, and internal and external validation cohorts, and used five feature selection techniques to select 10 of 720 potentially predictive variables from the electronic health records. Model performance was assessed by the area under the receiver operating characteristic curve in the validation cohorts. The primary outcome was development of AKI (per the Kidney Disease Improving Global Outcomes creatinine definition) within a moving 48-hour window. Secondary outcomes included severe AKI (stage 2 or 3), inpatient mortality, and length of stay.Among 8473 encounters studied, AKI occurred in 516 (10.2%), 207 (9%), and 27 (2.5%) encounters in the derivation, and internal and external validation cohorts, respectively. The highest-performing model used a machine learning-based genetic algorithm, with an overall receiver operating characteristic curve in the internal validation cohort of 0.76 [95% confidence interval (CI), 0.72 to 0.79] for AKI, 0.79 (95% CI, 0.74 to 0.83) for severe AKI, and 0.81 (95% CI, 0.77 to 0.86) for neonatal AKI. To translate this prediction model into a clinical risk-stratification tool, we identified high- and low-risk threshold points.Using various machine learning algorithms, we identified and validated a time-updated prediction model of ten readily available electronic health record variables to accurately predict imminent AKI in hospitalized children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrJiang完成签到,获得积分10
刚刚
ShengQ发布了新的文献求助10
2秒前
LDDDGR发布了新的文献求助10
3秒前
英姑应助一花一叶一春木采纳,获得30
4秒前
6秒前
6秒前
6秒前
隐形曼青应助小吴采纳,获得10
6秒前
kelien1205完成签到 ,获得积分10
8秒前
科研通AI2S应助torfun采纳,获得10
8秒前
GQZM发布了新的文献求助10
9秒前
ShengQ完成签到,获得积分10
10秒前
hhhhhh发布了新的文献求助10
11秒前
stevenliu67完成签到,获得积分10
11秒前
狗狗完成签到 ,获得积分10
11秒前
轩轩发布了新的文献求助10
12秒前
komisan完成签到 ,获得积分10
13秒前
14秒前
pluvia完成签到,获得积分10
15秒前
15秒前
17秒前
九日完成签到 ,获得积分10
18秒前
18秒前
Perry完成签到,获得积分10
21秒前
简单的沛蓝完成签到 ,获得积分10
21秒前
爱学习的YY完成签到 ,获得积分10
22秒前
22秒前
torfun发布了新的文献求助10
23秒前
周周完成签到 ,获得积分10
25秒前
25秒前
Worenxian完成签到,获得积分10
25秒前
谢谢你变体精灵完成签到,获得积分10
28秒前
团团团完成签到 ,获得积分0
28秒前
香蕉子骞完成签到 ,获得积分10
29秒前
torfun完成签到,获得积分20
30秒前
科研fw完成签到 ,获得积分10
30秒前
Focus_BG完成签到,获得积分10
34秒前
35秒前
37秒前
张嘉慧完成签到 ,获得积分10
40秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712815
求助须知:如何正确求助?哪些是违规求助? 3260928
关于积分的说明 9915603
捐赠科研通 2974421
什么是DOI,文献DOI怎么找? 1630952
邀请新用户注册赠送积分活动 773775
科研通“疑难数据库(出版商)”最低求助积分说明 744412