甲苯
化学
催化作用
光化学
羟基自由基
光解
光催化
苯甲醛
矿化(土壤科学)
纳米棒
激进的
氧化还原
分解
苯甲醇
降级(电信)
无机化学
有机化学
材料科学
纳米技术
氮气
电信
计算机科学
作者
Muyan Wu,Yingguang Zhang,Haibao Huang,Dennis Y.C. Leung
标识
DOI:10.1016/j.gee.2020.11.002
摘要
The present study specifically investigates vacuum ultraviolet (VUV) catalytic oxidation for toluene degradation over CeO2 nanorods. Synergetic effects of ultraviolet photocatalytic oxidation (UV-PCO) and ozone catalytic oxidation (OZCO) were manifested in the results of toluene removal and COx generation, while the combination of UV-PCO and OZCO (UV-OZCO) did not lead to improvement of mineralization. All the processes contribute to ozone decomposition, but no obvious synergetic effects of the different processes can be observed. Intermediate analysis results indicated that more toluene was oxidized into by-products, such as benzyl alcohol and benzaldehyde, by UV-OZCO rather than forming COx. Both hydroxyl radical (·OH) and superoxide radical (·O2−) were found in all the processes of the VUV-PCO-OZCO system (combination of VUV photolysis, UV-PCO, OZCO and UV-OZCO processes). In the UV-OZCO process, the formation of hydroxyl radical was promoted, while that of superoxide radical was impeded, resulting in lower mineralization level of toluene. The mechanistic study of toluene degradation over CeO2 nanorods in the VUV-PCO-OZCO system revealed that with the formation of ·O2− and ·OH, toluene is first oxidized to intermediates, followed by further ring–opening reaction and, finally, degradation into CO2 and H2O. CeO2 nanorods function as both ozonation catalyst and photocatalyst, and the redox pair of Ce3+ and Ce4+ are interconvertible and can keep a balance.
科研通智能强力驱动
Strongly Powered by AbleSci AI