Deep Learning of Spatiotemporal Filtering for Fast Super-Resolution Ultrasound Imaging

深度学习 卷积神经网络 人工智能 计算机科学 背景(考古学) 杂乱 可视化 基本事实 成像体模 滤波器(信号处理) 人工神经网络 数据集 模式识别(心理学) 计算机视觉 光学 物理 电信 生物 古生物学 雷达
作者
Katherine Brown,Debabrata Ghosh,Kenneth Hoyt
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:67 (9): 1820-1829 被引量:56
标识
DOI:10.1109/tuffc.2020.2988164
摘要

Super-resolution ultrasound (SR-US) imaging is a new technique that breaks the diffraction limit and allows visualization of microvascular structures down to tens of micrometers. The image processing methods for the spatiotemporal filtering needed in SR-US, such as singular value decomposition (SVD), are computationally burdensome and performed offline. Deep learning has been applied to many biomedical imaging problems, and trained neural networks have been shown to process an image in milliseconds. The goal of this study was to evaluate the effectiveness of deep learning to realize a spatiotemporal filter in the context of SR-US processing. A 3-D convolutional neural network (3DCNN) was trained on in vitro and in vivo data sets using SVD as ground truth in tissue clutter reduction. In vitro data were obtained from a tissue-mimicking flow phantom, and in vivo data were collected from murine tumors of breast cancer. Three training techniques were studied: training with in vitro data sets, training with in vivo data sets, and transfer learning with initial training on in vitro data sets followed by fine-tuning with in vivo data sets. The neural network trained with in vitro data sets followed by fine-tuning with in vivo data sets had the highest accuracy at 88.0%. The SR-US images produced with deep learning allowed visualization of vessels as small as 25 μm in diameter, which is below the diffraction limit (wavelength of 110 μm at 14 MHz). The performance of the 3DCNN was encouraging for real-time SR-US imaging with an average processing frame rate for in vivo data of 51 Hz with GPU acceleration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啊啊啊发布了新的文献求助10
刚刚
快哒哒哒发布了新的文献求助10
3秒前
希望天下0贩的0应助ddd采纳,获得10
3秒前
4秒前
4秒前
6秒前
dddd完成签到,获得积分10
6秒前
芝士拌麦粒完成签到,获得积分10
7秒前
8秒前
OvO发布了新的文献求助10
9秒前
陌上花开发布了新的文献求助10
10秒前
zywii完成签到,获得积分10
11秒前
13秒前
头发乱了发布了新的文献求助10
14秒前
14秒前
清隆完成签到,获得积分10
14秒前
ljhong1116应助鳗鱼厉采纳,获得60
18秒前
狂野世立发布了新的文献求助10
18秒前
英姑应助井中月采纳,获得10
19秒前
19秒前
科目三应助头发乱了采纳,获得30
23秒前
24秒前
ee发布了新的文献求助10
24秒前
荀语山完成签到,获得积分10
25秒前
顾矜应助muyangsiyuan采纳,获得10
25秒前
so000应助科研通管家采纳,获得10
26秒前
26秒前
在水一方应助王哪跑12采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
无花果应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
小彭友应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
彭于晏应助科研通管家采纳,获得30
27秒前
kingwill应助科研通管家采纳,获得20
27秒前
思源应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得30
27秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462763
求助须知:如何正确求助?哪些是违规求助? 3056257
关于积分的说明 9051348
捐赠科研通 2745940
什么是DOI,文献DOI怎么找? 1506717
科研通“疑难数据库(出版商)”最低求助积分说明 696194
邀请新用户注册赠送积分活动 695720