Deep Learning of Spatiotemporal Filtering for Fast Super-Resolution Ultrasound Imaging

深度学习 卷积神经网络 人工智能 计算机科学 背景(考古学) 杂乱 可视化 基本事实 成像体模 滤波器(信号处理) 人工神经网络 数据集 模式识别(心理学) 计算机视觉 光学 物理 古生物学 电信 雷达 生物
作者
Katherine Brown,Debabrata Ghosh,Kenneth Hoyt
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:67 (9): 1820-1829 被引量:56
标识
DOI:10.1109/tuffc.2020.2988164
摘要

Super-resolution ultrasound (SR-US) imaging is a new technique that breaks the diffraction limit and allows visualization of microvascular structures down to tens of micrometers. The image processing methods for the spatiotemporal filtering needed in SR-US, such as singular value decomposition (SVD), are computationally burdensome and performed offline. Deep learning has been applied to many biomedical imaging problems, and trained neural networks have been shown to process an image in milliseconds. The goal of this study was to evaluate the effectiveness of deep learning to realize a spatiotemporal filter in the context of SR-US processing. A 3-D convolutional neural network (3DCNN) was trained on in vitro and in vivo data sets using SVD as ground truth in tissue clutter reduction. In vitro data were obtained from a tissue-mimicking flow phantom, and in vivo data were collected from murine tumors of breast cancer. Three training techniques were studied: training with in vitro data sets, training with in vivo data sets, and transfer learning with initial training on in vitro data sets followed by fine-tuning with in vivo data sets. The neural network trained with in vitro data sets followed by fine-tuning with in vivo data sets had the highest accuracy at 88.0%. The SR-US images produced with deep learning allowed visualization of vessels as small as 25 μm in diameter, which is below the diffraction limit (wavelength of 110 μm at 14 MHz). The performance of the 3DCNN was encouraging for real-time SR-US imaging with an average processing frame rate for in vivo data of 51 Hz with GPU acceleration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不熬夜发布了新的文献求助10
1秒前
wang1完成签到 ,获得积分10
2秒前
Y.J发布了新的文献求助10
3秒前
Tonald Yang发布了新的文献求助10
4秒前
独特的凝云完成签到 ,获得积分10
4秒前
深情安青应助淡然冬灵采纳,获得100
7秒前
7秒前
lililili完成签到,获得积分10
7秒前
不做科研发布了新的文献求助20
8秒前
高高的笑柳完成签到 ,获得积分10
9秒前
无奈梦岚发布了新的文献求助10
11秒前
A12138完成签到 ,获得积分10
12秒前
SucceedIn完成签到,获得积分10
16秒前
16秒前
zdy完成签到,获得积分10
16秒前
顺利完成签到,获得积分10
16秒前
可露丽完成签到,获得积分10
17秒前
淡然冬灵完成签到,获得积分10
17秒前
wang完成签到 ,获得积分10
17秒前
研友_LX7478完成签到,获得积分10
18秒前
alick完成签到,获得积分10
19秒前
噗尼噗尼完成签到,获得积分10
19秒前
聂青枫完成签到,获得积分10
19秒前
沫荔完成签到 ,获得积分10
19秒前
woodaptx完成签到,获得积分10
20秒前
现代雁桃完成签到,获得积分20
20秒前
MrChew完成签到 ,获得积分10
21秒前
gogogog完成签到 ,获得积分10
23秒前
wbb完成签到 ,获得积分10
28秒前
小高同学完成签到,获得积分10
29秒前
卓垚完成签到,获得积分10
29秒前
violetlishu完成签到 ,获得积分10
31秒前
高高的天亦完成签到 ,获得积分10
33秒前
33秒前
不做科研完成签到,获得积分20
33秒前
无奈梦岚完成签到,获得积分10
34秒前
濮阳盼曼完成签到,获得积分10
34秒前
哎呀呀完成签到,获得积分10
35秒前
巧克力完成签到 ,获得积分10
36秒前
鉴定为学计算学的完成签到,获得积分10
39秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3742437
求助须知:如何正确求助?哪些是违规求助? 3284957
关于积分的说明 10042432
捐赠科研通 3001636
什么是DOI,文献DOI怎么找? 1647490
邀请新用户注册赠送积分活动 784217
科研通“疑难数据库(出版商)”最低求助积分说明 750676