Food Quality Monitoring System Based on Smart Contracts and Evaluation Models

块链 计算机科学 智能合约 可执行文件 质量(理念) 生产(经济) 自动化 可靠性(半导体) 过程(计算) 计算机安全 数据质量 数据库 风险分析(工程) 嵌入式系统 可靠性工程 操作系统 运营管理 业务 工程类 机械工程 公制(单位) 哲学 功率(物理) 物理 认识论 量子力学 经济 宏观经济学
作者
Bin Yu,Ping Zhan,Ming Lei,Fang Zhou,Peng Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 12479-12490 被引量:57
标识
DOI:10.1109/access.2020.2966020
摘要

Currently, food quality has become a major concern for the food industry. To efficiently detect food quality problems during the production process, food enterprises must build quality monitoring systems. However, in a traditional quality monitoring system, data tampering and centralized storage have become barriers to reliability. In addition, due to lack of sufficient automation, traditional quality monitoring approaches are usually inefficient. Fortunately, blockchain is a promising technology that is tamper-proof and decentralized. Moreover, smart contracts, which are executable codes on the blockchain platform, are able to conduct transactions between mutually untrusted parties and are self-executing and self-verifying. By combining smart contracts and quality evaluation models, this paper presents an intelligent quality monitoring system for fruit juice production. This system has the characteristics of high automation and high reliability. In this system, response surface models are established based on preproduction data, and the optimal production condition for each stage is identified. During the actual production process, smart contracts are executed to record production data on a blockchain. These data serve as the inputs for evaluation models. Based on the evaluation outcome, smart contracts will decide whether the production process can be resumed or not. To evaluate the feasibility of the presented system, a prototype version of the quality monitoring system for flat peach juice production is implemented based on the Ethereum platform and executed in the Remix IDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助半卷书采纳,获得10
1秒前
Xuhao23完成签到,获得积分10
1秒前
1秒前
2秒前
无情的说发布了新的文献求助10
2秒前
2秒前
tga发布了新的文献求助10
2秒前
2秒前
rosee完成签到,获得积分10
2秒前
浦肯野发布了新的文献求助10
3秒前
3秒前
fsx524402发布了新的文献求助10
3秒前
蔡佰航发布了新的文献求助10
3秒前
3秒前
qiongqiong发布了新的文献求助10
3秒前
星辰大海应助刘致远采纳,获得10
3秒前
负责月光发布了新的文献求助10
4秒前
dsgvdf完成签到,获得积分10
5秒前
5秒前
英姑应助小野采纳,获得10
5秒前
5秒前
5秒前
丘比特应助梅狸猫采纳,获得10
5秒前
123完成签到 ,获得积分10
6秒前
6秒前
小二郎应助蔡佰航采纳,获得10
7秒前
8秒前
cruise发布了新的文献求助10
10秒前
sean发布了新的文献求助10
10秒前
负责月光完成签到,获得积分10
10秒前
欧大大完成签到,获得积分10
10秒前
11秒前
11秒前
粥粥发布了新的文献求助10
12秒前
落基山脉脆皮玄米茶完成签到,获得积分10
12秒前
无情的说完成签到,获得积分10
12秒前
太阳完成签到,获得积分10
13秒前
sff发布了新的文献求助10
13秒前
blue发布了新的文献求助10
14秒前
西西西完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547012
求助须知:如何正确求助?哪些是违规求助? 3978071
关于积分的说明 12318010
捐赠科研通 3646605
什么是DOI,文献DOI怎么找? 2008273
邀请新用户注册赠送积分活动 1043802
科研通“疑难数据库(出版商)”最低求助积分说明 932460