Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data

高光谱成像 随机森林 卷积神经网络 支持向量机 模式识别(心理学) 人工智能 摄影测量学 树(集合论) 遥感 计算机科学 决策树 地理 人工神经网络 数据挖掘 数学 林业 地图学 数学分析
作者
Camile Sothe,Cláudia Maria de Almeida,Marcos Benedito Schimalski,Laura Elena Cué La Rosa,José David Bermúdez Castro,Raul Queiroz Feitosa,Michele Dalponte,Carla Luciane Lima,Veraldo Liesenberg,Gabriela Takahashi Miyoshi,Antônio Maria Garcia Tommaselli
出处
期刊:Giscience & Remote Sensing [Informa]
卷期号:57 (3): 369-394 被引量:133
标识
DOI:10.1080/15481603.2020.1712102
摘要

The classification of tree species can significantly benefit from high spatial and spectral information acquired by unmanned aerial vehicles (UAVs) associated with advanced classification methods. This study investigated the following topics concerning the classification of 16 tree species in two subtropical forest fragments of Southern Brazil: i) the potential integration of UAV-borne hyperspectral images with 3D information derived from their photogrammetric point cloud (PPC); ii) the performance of two machine learning methods (support vector machine – SVM and random forest – RF) when employing different datasets at a pixel and individual tree crown (ITC) levels; iii) the potential of two methods for dealing with the imbalanced sample set problem: a new weighted SVM (wSVM) approach, which attributes different weights to each sample and class, and a deep learning classifier (convolutional neural network – CNN), associated with a previous step to balance the sample set; and finally, iv) the potential of this last classifier for tree species classification as compared to the above mentioned machine learning methods. Results showed that the inclusion of the PPC features to the hyperspectral data provided a great accuracy increase in tree species classification results when conventional machine learning methods were applied, between 13 and 17% depending on the classifier and the study area characteristics. When using the PPC features and the canopy height model (CHM), associated with the majority vote (MV) rule, the SVM, wSVM and RF classifiers reached accuracies similar to the CNN, which outperformed these classifiers for both areas when considering the pixel-based classifications (overall accuracy of 84.4% in Area 1, and 74.95% in Area 2). The CNN was between 22% and 26% more accurate than the SVM and RF when only the hyperspectral bands were employed. The wSVM provided a slight increase in accuracy not only for some lesser represented classes, but also some major classes in Area 2. While conventional machine learning methods are faster, they demonstrated to be less stable to changes in datasets, depending on prior segmentation and hand-engineered features to reach similar accuracies to those attained by the CNN. To date, CNNs have been barely explored for the classification of tree species, and CNN-based classifications in the literature have not dealt with hyperspectral data specifically focusing on tropical environments. This paper thus presents innovative strategies for classifying tree species in subtropical forest areas at a refined legend level, integrating UAV-borne 2D hyperspectral and 3D photogrammetric data and relying on both deep and conventional machine learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
幸运小冲鸭完成签到 ,获得积分10
1秒前
华仔应助落后中蓝采纳,获得10
2秒前
xiao完成签到,获得积分10
2秒前
11发布了新的文献求助10
2秒前
科研通AI5应助感动的念双采纳,获得10
2秒前
被风吹跑的yanyanyan完成签到,获得积分10
3秒前
4秒前
科研通AI5应助九辨采纳,获得10
5秒前
plmm完成签到,获得积分10
5秒前
科研顺利完成签到,获得积分10
6秒前
taytay关注了科研通微信公众号
7秒前
7秒前
太白金鑫完成签到,获得积分10
7秒前
8秒前
zhenyu完成签到,获得积分10
9秒前
科研通AI5应助YCY采纳,获得10
9秒前
orixero应助YCY采纳,获得10
9秒前
10秒前
11完成签到,获得积分10
10秒前
隐形曼青应助花痴的老太采纳,获得10
11秒前
UBW发布了新的文献求助10
13秒前
diee发布了新的文献求助10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得30
15秒前
液晶屏99发布了新的文献求助10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
kermit应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483701
求助须知:如何正确求助?哪些是违规求助? 3072962
关于积分的说明 9128742
捐赠科研通 2764574
什么是DOI,文献DOI怎么找? 1517253
邀请新用户注册赠送积分活动 701974
科研通“疑难数据库(出版商)”最低求助积分说明 700831