铱
共轭体系
材料科学
聚合物太阳能电池
能量转换效率
化学工程
聚合物
高分子化学
光伏系统
纳米技术
光电子学
有机化学
化学
电气工程
复合材料
催化作用
工程类
作者
Tao Wang,Rui Sun,Mumin Shi,Fei Pan,Zhicheng Hu,Fei Huang,Yongfang Li,Jie Min
标识
DOI:10.1002/aenm.202000590
摘要
Abstract The commercially available PM6 as donor materials are used widely in highly efficient nonfullerene polymer solar cells (PSCs). In this work, different concentrations of iridium (Ir) complexes (0, 0.5, 1, 2.5, and 5 mol%) are incorporated carefully into the polymer conjugated backbone of PM6 (PM6‐Ir0), and a set of π‐conjugated polymer donors (named PM6‐Ir0.5, PM6‐Ir1, PM6‐Ir2.5, and PM6‐Ir5) are synthesized and characterized. It is demonstrated that the approach can rationally modify the molecular aggregations of polymer donors, effectively controlling the corresponding blend morphology and physical mechanisms, and finally improve the photovoltaic performance of the PM6‐Ir x ‐based PSCs. Among them, the best device based on PM6‐Ir1:Y6 (1:1.2, w/w) exhibits outstanding power conversion efficiencies (PCEs) of 17.24% tested at Wuhan University and 17.32% tested at Institute of Chemistry, Chinese Academy of Sciences as well as a certified PCE of 16.70%, which are much higher than that of the control device based on the PM6‐Ir0:Y6 blend (15.39%). This work affords an effective approach for further break through the reported champion PCE of the binary PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI