A deep learning framework for improving protein interaction prediction using sequence properties

计算机科学 人工智能 深度学习 机器学习 鉴定(生物学) 计算生物学 序列(生物学) 相关性(法律) 人工神经网络 蛋白质-蛋白质相互作用 生物 政治学 遗传学 植物 法学
作者
Yi Guo,Xiang Chen
标识
DOI:10.1101/843755
摘要

Abstract Motivation Almost all critical functions and processes in cells are sustained by the cellular networks of protein-protein interactions (PPIs), understanding these is therefore crucial in the investigation of biological systems. Despite all past efforts, we still lack high-quality PPI data for constructing the networks, which makes it challenging to study the functions of association of proteins. High-throughput experimental techniques have produced abundant data for systematically studying the cellular networks of a biological system and the development of computational method for PPI identification. Results We have developed a deep learning-based framework, named iPPI, for accurately predicting PPI on a proteome-wide scale depended only on sequence information. iPPI integrates the amino acid properties and compositions of protein sequence into a unified prediction framework using a hybrid deep neural network. Extensive tests demonstrated that iPPI can greatly outperform the state-of-the-art prediction methods in identifying PPIs. In addition, the iPPI prediction score can be related to the strength of protein-protein binding affinity and further showed the biological relevance of our deep learning framework to identify PPIs. Availability and Implementation iPPI is available as an open-source software and can be downloaded from https://github.com/model-lab/deeplearning.ppi Contact xiang-chen@zju.edu.cn
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助eager采纳,获得10
1秒前
cc应助一条不咸鱼的鱼采纳,获得10
1秒前
JacobCheng1发布了新的文献求助10
1秒前
lsc发布了新的文献求助10
1秒前
Haicheng完成签到,获得积分10
2秒前
shelia发布了新的文献求助10
3秒前
旋转小菠萝完成签到,获得积分20
3秒前
椹木发布了新的文献求助10
4秒前
脑洞疼应助hailang820316采纳,获得10
4秒前
4秒前
Zzz_Carlos完成签到 ,获得积分10
4秒前
晨曦完成签到,获得积分10
4秒前
懦弱的硬币完成签到,获得积分10
5秒前
程勋航完成签到,获得积分10
7秒前
ding应助wjm采纳,获得10
7秒前
成就雨筠应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
9秒前
snow完成签到,获得积分10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
10秒前
朴素的冬日完成签到,获得积分10
10秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
sian完成签到,获得积分10
10秒前
机灵鞋垫完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557744
求助须知:如何正确求助?哪些是违规求助? 3132808
关于积分的说明 9399558
捐赠科研通 2832945
什么是DOI,文献DOI怎么找? 1557160
邀请新用户注册赠送积分活动 727114
科研通“疑难数据库(出版商)”最低求助积分说明 716191