已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of radiomics to extract splenic features to predict prognosis of patients with gastric cancer

医学 无线电技术 癌症 内科学 放射科 肿瘤科
作者
Xiang Wang,Jing Sun,Weiteng Zhang,Xinxin Yang,Ce Zhu,Bujian Pan,Yunpeng Zeng,Jingxuan Xu,Xiaohong Chen,Xian Shen
出处
期刊:Ejso [Elsevier]
卷期号:46 (10): 1932-1940 被引量:15
标识
DOI:10.1016/j.ejso.2020.06.021
摘要

Radiomics allows for mining of imaging data to examine tissue characteristics non-invasively, which can be used to predict the prognosis of a patient. This study explored the use of imaging techniques to evaluate splenic tissue characteristics to predict the prognosis of patients with gastric cancer.Computed tomography images from patients with gastric cancer were collected retrospectively. Splenic image characteristics, extracted with pyradiomics, of patients in the training group were randomly divided. Characteristics with a P value < 0.1 were selected for lasso regression to construct a survival risk model. Models for high-and low-risk groups were established. Patients were divided into the high- and low-risk groups for univariate and multivariate regression analysis of survival-related factors, and a visual prognostic prediction model was established.The splenic characteristic prognostic model was consistent in the training and verification groups (p < 0.001 and p = 0.016, respectively). The two groups that displayed different splenic characteristics showed no statistical difference in other basic data except the tumour-node-metastasis (pTNM) stage (p = 0.007). Univariate and multivariate analysis of survival risk factors showed that splenic characteristics (p = 0.042), age (p < 0.001), tumor location (p = 0.002), and pTNM stage (p < 0.001) were independent risk factors for survival. The prognostic prediction model combined with splenic characteristics significantly improved the accuracy of prognosis, predicting one-and three-year survival rates.Splenic features extracted from imaging technology can accurately predict the long-term survival of patients with gastric cancer. Splenic characteristic grouping can effectively improve the accuracy of survival prediction and gastric cancer prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AHA完成签到,获得积分10
2秒前
2秒前
XKINGLEE完成签到 ,获得积分10
2秒前
LINbiaozhi发布了新的文献求助10
3秒前
梵星完成签到 ,获得积分10
6秒前
thousandlong发布了新的文献求助10
7秒前
xxx完成签到 ,获得积分10
8秒前
积极慕梅完成签到,获得积分10
9秒前
9秒前
仁爱灭龙发布了新的文献求助10
12秒前
13秒前
雪白秋柔发布了新的文献求助10
14秒前
懵懂的愫完成签到 ,获得积分10
17秒前
xzy998应助文刀采纳,获得10
17秒前
澳子哥发布了新的文献求助10
18秒前
画船听雨眠完成签到 ,获得积分10
19秒前
26秒前
27秒前
整齐冰凡完成签到 ,获得积分10
27秒前
吾日三省吾身完成签到 ,获得积分10
30秒前
学渣本渣发布了新的文献求助10
32秒前
赵振辉发布了新的文献求助10
35秒前
35秒前
张尧摇摇摇完成签到 ,获得积分10
37秒前
杨二锤完成签到 ,获得积分10
41秒前
文刀完成签到,获得积分10
44秒前
二牛完成签到,获得积分10
45秒前
46秒前
jeronimo完成签到,获得积分10
47秒前
李爱国应助学渣本渣采纳,获得10
51秒前
赘婿应助hlqi采纳,获得10
52秒前
RADIUM三餐都要吃肉完成签到,获得积分10
58秒前
景辣条应助想疯采纳,获得10
1分钟前
1分钟前
老才完成签到 ,获得积分10
1分钟前
英姑应助七仔采纳,获得10
1分钟前
所所应助想疯采纳,获得10
1分钟前
yerlan完成签到,获得积分10
1分钟前
吕小布完成签到,获得积分10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130036
求助须知:如何正确求助?哪些是违规求助? 2780836
关于积分的说明 7750316
捐赠科研通 2436079
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623703
版权声明 600570