Use of radiomics to extract splenic features to predict prognosis of patients with gastric cancer

医学 无线电技术 癌症 内科学 放射科 肿瘤科
作者
Xiang Wang,Jing Sun,Weiteng Zhang,Xinxin Yang,Ce Zhu,Bujian Pan,Yunpeng Zeng,Jingxuan Xu,Xiaohong Chen,Xian Shen
出处
期刊:Ejso [Elsevier BV]
卷期号:46 (10): 1932-1940 被引量:18
标识
DOI:10.1016/j.ejso.2020.06.021
摘要

Radiomics allows for mining of imaging data to examine tissue characteristics non-invasively, which can be used to predict the prognosis of a patient. This study explored the use of imaging techniques to evaluate splenic tissue characteristics to predict the prognosis of patients with gastric cancer.Computed tomography images from patients with gastric cancer were collected retrospectively. Splenic image characteristics, extracted with pyradiomics, of patients in the training group were randomly divided. Characteristics with a P value < 0.1 were selected for lasso regression to construct a survival risk model. Models for high-and low-risk groups were established. Patients were divided into the high- and low-risk groups for univariate and multivariate regression analysis of survival-related factors, and a visual prognostic prediction model was established.The splenic characteristic prognostic model was consistent in the training and verification groups (p < 0.001 and p = 0.016, respectively). The two groups that displayed different splenic characteristics showed no statistical difference in other basic data except the tumour-node-metastasis (pTNM) stage (p = 0.007). Univariate and multivariate analysis of survival risk factors showed that splenic characteristics (p = 0.042), age (p < 0.001), tumor location (p = 0.002), and pTNM stage (p < 0.001) were independent risk factors for survival. The prognostic prediction model combined with splenic characteristics significantly improved the accuracy of prognosis, predicting one-and three-year survival rates.Splenic features extracted from imaging technology can accurately predict the long-term survival of patients with gastric cancer. Splenic characteristic grouping can effectively improve the accuracy of survival prediction and gastric cancer prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漫漫发布了新的文献求助10
刚刚
刚刚
1秒前
小慕斯发布了新的文献求助10
1秒前
Banbor2021完成签到,获得积分0
1秒前
木子青山完成签到,获得积分10
1秒前
无敌龙傲天完成签到 ,获得积分10
2秒前
甜美冷雁完成签到,获得积分10
2秒前
3秒前
现代的bb完成签到,获得积分10
3秒前
fmx完成签到,获得积分10
3秒前
3秒前
研友_8DWD3Z完成签到,获得积分10
3秒前
3秒前
爱撒娇的孤丹完成签到 ,获得积分10
3秒前
lxy完成签到,获得积分10
4秒前
lidianji122发布了新的文献求助10
5秒前
深情安青应助机智冬灵采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
聪慧芷巧发布了新的文献求助10
6秒前
yy完成签到,获得积分10
6秒前
DJY完成签到,获得积分10
6秒前
吴垚完成签到,获得积分10
6秒前
Naixichaohaohe完成签到,获得积分10
6秒前
6秒前
lee发布了新的文献求助10
7秒前
cunzhang发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
Akim应助kirito采纳,获得10
8秒前
天水碧完成签到,获得积分10
8秒前
9秒前
赵十一完成签到,获得积分10
9秒前
岁峰柒完成签到,获得积分10
9秒前
ZJPPPP完成签到,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950510
求助须知:如何正确求助?哪些是违规求助? 3495946
关于积分的说明 11079852
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783799
邀请新用户注册赠送积分活动 867892
科研通“疑难数据库(出版商)”最低求助积分说明 800942