Use of radiomics to extract splenic features to predict prognosis of patients with gastric cancer

医学 无线电技术 癌症 内科学 放射科 肿瘤科
作者
Xiang Wang,Jing Sun,Weiteng Zhang,Xinxin Yang,Ce Zhu,Bujian Pan,Yunpeng Zeng,Jingxuan Xu,Xiaohong Chen,Xian Shen
出处
期刊:Ejso [Elsevier]
卷期号:46 (10): 1932-1940 被引量:19
标识
DOI:10.1016/j.ejso.2020.06.021
摘要

Radiomics allows for mining of imaging data to examine tissue characteristics non-invasively, which can be used to predict the prognosis of a patient. This study explored the use of imaging techniques to evaluate splenic tissue characteristics to predict the prognosis of patients with gastric cancer.Computed tomography images from patients with gastric cancer were collected retrospectively. Splenic image characteristics, extracted with pyradiomics, of patients in the training group were randomly divided. Characteristics with a P value < 0.1 were selected for lasso regression to construct a survival risk model. Models for high-and low-risk groups were established. Patients were divided into the high- and low-risk groups for univariate and multivariate regression analysis of survival-related factors, and a visual prognostic prediction model was established.The splenic characteristic prognostic model was consistent in the training and verification groups (p < 0.001 and p = 0.016, respectively). The two groups that displayed different splenic characteristics showed no statistical difference in other basic data except the tumour-node-metastasis (pTNM) stage (p = 0.007). Univariate and multivariate analysis of survival risk factors showed that splenic characteristics (p = 0.042), age (p < 0.001), tumor location (p = 0.002), and pTNM stage (p < 0.001) were independent risk factors for survival. The prognostic prediction model combined with splenic characteristics significantly improved the accuracy of prognosis, predicting one-and three-year survival rates.Splenic features extracted from imaging technology can accurately predict the long-term survival of patients with gastric cancer. Splenic characteristic grouping can effectively improve the accuracy of survival prediction and gastric cancer prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Zengjx完成签到,获得积分20
刚刚
刚刚
陈泽显发布了新的文献求助10
1秒前
snotman完成签到,获得积分10
1秒前
2秒前
董晏殊发布了新的文献求助10
2秒前
2秒前
浮世一梦发布了新的文献求助10
2秒前
abcd_1067发布了新的文献求助10
2秒前
2秒前
hrs发布了新的文献求助10
3秒前
3秒前
充电宝应助AR采纳,获得10
3秒前
CodeCraft应助小欣采纳,获得10
3秒前
李xxxx完成签到 ,获得积分10
3秒前
研友_nPPzon完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
打打应助Sirene采纳,获得30
4秒前
kigyccwh发布了新的文献求助10
5秒前
叶95发布了新的文献求助10
5秒前
5秒前
小小富完成签到,获得积分10
6秒前
Ray羽曦~完成签到,获得积分10
6秒前
可爱的函函应助zfd采纳,获得10
7秒前
星辰大海应助Echo采纳,获得10
7秒前
8秒前
ohh完成签到,获得积分10
8秒前
我是老大应助研友_LOokQL采纳,获得10
8秒前
yutingemail发布了新的文献求助10
9秒前
9秒前
9秒前
大个应助平常的宝马采纳,获得10
9秒前
lily发布了新的文献求助10
10秒前
11秒前
橙橙发布了新的文献求助10
11秒前
hazekurt完成签到,获得积分10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066