Boosting charge storage in 1D manganese oxide-carbon composite by phosphorus-assisted structural modification for supercapacitor applications

材料科学 超级电容器 结晶度 电化学 化学工程 储能 复合数 电极 纳米技术 氧化物 冶金 物理化学 复合材料 热力学 化学 功率(物理) 工程类 物理
作者
Wei Guo,Chang Yu,Changtai Zhao,Wang Zhao,Shaofeng Li,Jinhe Yu,Xinyi Tan,Yuanyang Xie,Le Yang,Hongling Huang,Rong Fu,Jieshan Qiu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:31: 172-180 被引量:37
标识
DOI:10.1016/j.ensm.2020.06.008
摘要

Abstract For electrochemical energy storage, the inevitable oxidation and phase evolution process in many low-valent one-dimensional (1D) transition metal oxides displayed gradually optimized electrochemical characteristics, nevertheless, it is generally sluggish in dynamics. Accelerating this process to achieve efficient energy output remains a significant challenge. Herein, with 1D Mn3O4 as a demo, it was revealed that phosphorus species (P) acted as the active species-like effects, thus robustly accelerating phase evolution process from 1D to two-dimensional (2D) oxides with enhanced charge-storage kinetics. The P-modulated Mn3O4 (P–Mn3O4) presents the optimized surface chemistry properties, unsaturated coordination sites and internal disorders, then the accompanied P leaching in P–Mn3O4 further leads to the formation of low-crystallinity MnO2 with O vacancies and abundant grain boundaries for a highly enhanced capacitive performance. As such, the P–Mn3O4-coupled carbon can reach the areal capacitance of 8743 ​mF ​cm−2 (high mass loading: 44.2 ​mg ​cm−2) at 1 ​mA ​cm−2 after fast phase evolution, together with the high mass and volume capacitances of 198 ​F ​g−1 and 113 ​F ​cm−3, respectively. This P-mediated approach to accelerate phase evolution is universal, evidenced by the extensively studied NiCo-based oxides. This contribution would provide a novel and powerful idea to modulate transition metal hybrids and manipulate active species for efficient energy storage and conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大鹏完成签到,获得积分10
刚刚
刚刚
刚刚
congguitar发布了新的文献求助10
1秒前
CodeCraft应助韭黄采纳,获得10
1秒前
1秒前
小月发布了新的文献求助10
1秒前
香蕉觅云应助学渣向下采纳,获得10
2秒前
2秒前
YML完成签到,获得积分10
3秒前
荣安安完成签到,获得积分10
3秒前
啦某某完成签到,获得积分10
3秒前
sunzhiyu233发布了新的文献求助10
4秒前
zhenzhen发布了新的文献求助10
4秒前
fang发布了新的文献求助10
4秒前
chengyulin完成签到 ,获得积分10
4秒前
孙二二发布了新的文献求助10
4秒前
小二郎应助SY采纳,获得10
5秒前
Akim应助顺心的惜蕊采纳,获得10
6秒前
6秒前
berry完成签到,获得积分20
7秒前
康小郁完成签到,获得积分10
7秒前
快乐友灵完成签到,获得积分10
7秒前
8秒前
群木成林完成签到,获得积分10
8秒前
小白一号完成签到 ,获得积分10
8秒前
Cynthia完成签到 ,获得积分10
8秒前
李惊鸿完成签到,获得积分10
8秒前
8秒前
8秒前
愤怒的子骞完成签到,获得积分10
9秒前
Emilia完成签到,获得积分10
10秒前
11秒前
烩面大师发布了新的文献求助10
11秒前
鲍binyu完成签到,获得积分10
12秒前
Hello应助猪猪hero采纳,获得10
12秒前
今后应助xiuxiu_27采纳,获得10
13秒前
13秒前
jjy发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759