Noncontrast Computed Tomography-Based Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage

医学 无线电技术 脑出血 放射科 血肿 脑内血肿 计算机断层摄影术 自发性脑出血 脑出血 外科 神经外科 蛛网膜下腔出血
作者
Zuhua Song,Dajing Guo,Zhuoyue Tang,Huan Liu,Xin Li,Sha Luo,Xueying Yao,Wenlong Song,Junjie Song,Zhiming Zhou
出处
期刊:Korean Journal of Radiology [Korean Society of Radiology]
卷期号:22 (3): 415-415 被引量:46
标识
DOI:10.3348/kjr.2020.0254
摘要

To determine whether noncontrast computed tomography (NCCT) models based on multivariable, radiomics features, and machine learning (ML) algorithms could further improve the discrimination of early hematoma expansion (HE) in patients with spontaneous intracerebral hemorrhage (sICH).We retrospectively reviewed 261 patients with sICH who underwent initial NCCT within 6 hours of ictus and follow-up CT within 24 hours after initial NCCT, between April 2011 and March 2019. The clinical characteristics, imaging signs and radiomics features extracted from the initial NCCT images were used to construct models to discriminate early HE. A clinical-radiologic model was constructed using a multivariate logistic regression (LR) analysis. Radiomics models, a radiomics-radiologic model, and a combined model were constructed in the training cohort (n = 182) and independently verified in the validation cohort (n = 79). Receiver operating characteristic analysis and the area under the curve (AUC) were used to evaluate the discriminative power.The AUC of the clinical-radiologic model for discriminating early HE was 0.766. The AUCs of the radiomics model for discriminating early HE built using the LR algorithm in the training and validation cohorts were 0.926 and 0.850, respectively. The AUCs of the radiomics-radiologic model in the training and validation cohorts were 0.946 and 0.867, respectively. The AUCs of the combined model in the training and validation cohorts were 0.960 and 0.867, respectively.NCCT models based on multivariable, radiomics features and ML algorithm could improve the discrimination of early HE. The combined model was the best recommended model to identify sICH patients at risk of early HE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYQ680906完成签到 ,获得积分10
刚刚
脑洞疼应助南柯一梦采纳,获得10
1秒前
科研通AI5应助胡浩然采纳,获得30
2秒前
2秒前
2秒前
2秒前
Npccc发布了新的文献求助10
2秒前
情怀应助stitch采纳,获得10
2秒前
3秒前
5秒前
长情天抒发布了新的文献求助10
8秒前
小垃圾发布了新的文献求助10
8秒前
端木发布了新的文献求助10
9秒前
大模型应助wave采纳,获得10
12秒前
共享精神应助追寻孤丝采纳,获得20
12秒前
电磁波十点半完成签到,获得积分10
13秒前
lwl666应助smallcc采纳,获得10
14秒前
科研通AI5应助xiaolin采纳,获得10
15秒前
欣喜惜筠发布了新的文献求助10
16秒前
18秒前
keroro完成签到,获得积分10
18秒前
oydent完成签到,获得积分10
18秒前
Jasper应助柔弱亦寒采纳,获得10
18秒前
舒心的晟睿完成签到,获得积分10
19秒前
20秒前
大个应助顺其自然_666888采纳,获得10
21秒前
jun_luo发布了新的文献求助10
22秒前
澡雪发布了新的文献求助10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
猪猪hero应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
23秒前
猪猪hero应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得50
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753041
求助须知:如何正确求助?哪些是违规求助? 3296600
关于积分的说明 10094658
捐赠科研通 3011409
什么是DOI,文献DOI怎么找? 1653764
邀请新用户注册赠送积分活动 788434
科研通“疑难数据库(出版商)”最低求助积分说明 752827