Noncontrast Computed Tomography-Based Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage

医学 无线电技术 脑出血 放射科 血肿 脑内血肿 计算机断层摄影术 自发性脑出血 脑出血 外科 神经外科 蛛网膜下腔出血
作者
Zuhua Song,Dajing Guo,Zhuoyue Tang,Huan Liu,Xin Li,Sha Luo,Xueying Yao,Wenlong Song,Junjie Song,Zhiming Zhou
出处
期刊:Korean Journal of Radiology [The Korean Society of Radiology]
卷期号:22 (3): 415-415 被引量:46
标识
DOI:10.3348/kjr.2020.0254
摘要

To determine whether noncontrast computed tomography (NCCT) models based on multivariable, radiomics features, and machine learning (ML) algorithms could further improve the discrimination of early hematoma expansion (HE) in patients with spontaneous intracerebral hemorrhage (sICH).We retrospectively reviewed 261 patients with sICH who underwent initial NCCT within 6 hours of ictus and follow-up CT within 24 hours after initial NCCT, between April 2011 and March 2019. The clinical characteristics, imaging signs and radiomics features extracted from the initial NCCT images were used to construct models to discriminate early HE. A clinical-radiologic model was constructed using a multivariate logistic regression (LR) analysis. Radiomics models, a radiomics-radiologic model, and a combined model were constructed in the training cohort (n = 182) and independently verified in the validation cohort (n = 79). Receiver operating characteristic analysis and the area under the curve (AUC) were used to evaluate the discriminative power.The AUC of the clinical-radiologic model for discriminating early HE was 0.766. The AUCs of the radiomics model for discriminating early HE built using the LR algorithm in the training and validation cohorts were 0.926 and 0.850, respectively. The AUCs of the radiomics-radiologic model in the training and validation cohorts were 0.946 and 0.867, respectively. The AUCs of the combined model in the training and validation cohorts were 0.960 and 0.867, respectively.NCCT models based on multivariable, radiomics features and ML algorithm could improve the discrimination of early HE. The combined model was the best recommended model to identify sICH patients at risk of early HE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云上人发布了新的文献求助20
2秒前
Shayulajiao发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
无花果应助谨慎冰薇采纳,获得10
5秒前
快乐滑板应助奥特曼采纳,获得10
6秒前
keyan完成签到,获得积分10
6秒前
7秒前
CodeCraft应助Amber采纳,获得10
7秒前
充电宝应助Yanci采纳,获得10
7秒前
Pierce发布了新的文献求助10
8秒前
12秒前
此时此刻发布了新的文献求助10
13秒前
haosu应助阿屁屁猪采纳,获得10
13秒前
13秒前
13秒前
大力翠阳完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
搜集达人应助卷卷516采纳,获得10
15秒前
15秒前
可爱的函函应助微雨初晴采纳,获得10
17秒前
17秒前
llls发布了新的文献求助10
19秒前
19秒前
jack发布了新的文献求助10
19秒前
隐形曼青应助勤恳的小小采纳,获得10
19秒前
无心发布了新的文献求助30
19秒前
huang完成签到,获得积分10
20秒前
22秒前
huang发布了新的文献求助10
23秒前
orixero应助zzyfsh采纳,获得10
23秒前
Amber发布了新的文献求助10
23秒前
欢喜素阴发布了新的文献求助10
24秒前
爆米花应助王欣采纳,获得10
24秒前
25秒前
思源应助huang采纳,获得10
25秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458698
求助须知:如何正确求助?哪些是违规求助? 3053476
关于积分的说明 9036705
捐赠科研通 2742678
什么是DOI,文献DOI怎么找? 1504506
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694494