Rationally constructing of a novel 2D/2D WO3/Pt/g-C3N4 Schottky-Ohmic junction towards efficient visible-light-driven photocatalytic hydrogen evolution and mechanism insight

欧姆接触 光催化 肖特基二极管 材料科学 光电子学 异质结 化学工程 载流子 肖特基势垒 带隙 催化作用 纳米技术 化学 图层(电子) 二极管 工程类 生物化学
作者
Yingying Qin,Jian Lu,Fanying Meng,Xinyu Lin,Yonghai Feng,Yongsheng Yan,Minjia Meng
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:586: 576-587 被引量:52
标识
DOI:10.1016/j.jcis.2020.10.123
摘要

Abstract Effectively separating photo-generated charge carriers is usually important but difficult for the high-activity photocatalysis. Fabricating 2D/2D Schottky-Ohmic junction is more beneficial to the spatial separation and transfer of photo-induced charges at the interface of different components due to the matching of distinct two-dimension structure and band alignment, but the manipulation and mastery of junction type (Schottky-Ohmic junction and Z-scheme junction) and electronic structure is an arduous task for preparing satisfactory photocatalysts and investigating the PHE mechanism. In this work, the 2D/2D WO3/Pt/g-C3N4 (WPC) Schottky-Ohmic junction composite photocatalysts is formed via facile hydrothermal and photo-induced deposition method for employing to produce H2. The optimized WPC Schottky-Ohmic junction photocatalyst exhibits remarkable photocatalytic H2-release performance with ability to produce the amount of H2 reaches 1299.4 μmol upon exposure to visible light, which is about 1.2 and 11.5 times higher than that of WO3/g-C3N4/Pt (WCP) (1119.4 μmol) and pure CN (113.2 μmol)), respectively. This remarkable enhancement of photocatalytic performance is ascribed to: (i) Schottky-Ohmic junction can strikingly expedite spatial charge separation and elongate electron lifetime, (ii) the 2D/2D structure can shorten the charge transportation distance, (iii) Pt with rich electron density can stably adsorb H+. This work provides a successful paradigm for future fundamental research, and exquisitely designs ideal g-C3N4-based photocatalysts by simultaneously adjusting and optimizing material structure and electronic dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵凌香完成签到,获得积分10
刚刚
我必做出来完成签到,获得积分10
1秒前
坤坤完成签到,获得积分10
1秒前
小狼应助yuan采纳,获得10
2秒前
高大海蓝发布了新的文献求助10
2秒前
3秒前
倾千奚山发布了新的文献求助10
3秒前
敏尔完成签到,获得积分10
3秒前
thebin发布了新的文献求助10
3秒前
强健的电灯胆完成签到,获得积分10
3秒前
4秒前
吴五五发布了新的文献求助10
4秒前
杰尼龟完成签到,获得积分10
5秒前
伊伊完成签到,获得积分20
5秒前
5秒前
搜集达人应助辛勤凌旋采纳,获得10
5秒前
caizhiwei发布了新的文献求助10
5秒前
Helong Feng完成签到,获得积分10
6秒前
微微完成签到,获得积分20
7秒前
7秒前
NexusExplorer应助Q11采纳,获得10
7秒前
8秒前
Akim应助伊伊采纳,获得10
8秒前
啊光光光发布了新的文献求助20
9秒前
9秒前
Akim应助春暖花开采纳,获得10
10秒前
琴生完成签到,获得积分10
10秒前
小布丁完成签到,获得积分10
11秒前
11秒前
獭獭完成签到,获得积分20
12秒前
LCC发布了新的文献求助10
12秒前
12秒前
天天快乐应助PaoPao采纳,获得10
13秒前
青天鸟1989完成签到,获得积分10
14秒前
结实缘郡完成签到,获得积分10
14秒前
14秒前
俏皮芹发布了新的文献求助10
14秒前
倾千奚山完成签到,获得积分10
14秒前
Hello应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539584
求助须知:如何正确求助?哪些是违规求助? 3117278
关于积分的说明 9329702
捐赠科研通 2814967
什么是DOI,文献DOI怎么找? 1547365
邀请新用户注册赠送积分活动 720905
科研通“疑难数据库(出版商)”最低求助积分说明 712351