等离子体子
太赫兹辐射
生物分子
环面
偶极子
谐振器
小型化
表面等离子共振
物理
光电子学
材料科学
纳米技术
纳米颗粒
等离子体
量子力学
作者
Arash Ahmadivand,Burak Gerislioglu,Zeinab Ramezani,Ajeet Kaushik,Pandiaraj Manickam,S. Amir Ghoreishi
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:15
标识
DOI:10.48550/arxiv.2006.08536
摘要
Effective and efficient management of human betacoronavirus severe acute respiratory syndrome (SARS)-CoV-2 infection i.e., COVID-19 pandemic, required sensitive sensors with short sample-to-result durations for performing diagnostics. In this direction, one of appropriate alternative approach to detect SARS-CoV-2 at low level (fmol) is exploring plasmonic metasensor technology for COVID-19 diagnostics, which offers exquisite opportunities in advanced healthcare programs, and modern clinical diagnostics. The intrinsic merits of plasmonic metasensors stem from their capability to squeeze electromagnetic fields, simultaneously in frequency, time, and space. However, the detection of low-molecular weight biomolecules at low densities is a typical drawback of conventional metasensors that has recently been addressed using toroidal metasurface technology. This research reports fabrication of a miniaturized plasmonic immunosensor based on toroidal electrodynamics concept that can sustain robustly confined plasmonic modes with ultranarrow lineshapes in the terahertz (THz) frequencies. By exciting toroidal dipole mode using our quasi-infinite metasurface and a judiciously optimized protocol based on functionalized gold nanoparticles (NPs) conjugated with the specific monoclonal antibody of SARS-CoV-2 onto the metasurface, the resonance shifts for diverse concentrations of the spike protein is monitored. Possessing molecular weight around ~76 kDa allowed us to detect the presence of spike protein with significantly low LoD ~4.2 fmol.
科研通智能强力驱动
Strongly Powered by AbleSci AI