CD86
CD80
化学
促炎细胞因子
Toll样受体
CD40
TLR2型
分子生物学
树突状细胞
受体
生物化学
免疫系统
T细胞
细胞生物学
TLR4型
先天免疫系统
细胞毒性T细胞
生物
炎症
免疫学
体外
作者
Shengnan Liu,Ye Yang,Yuan Qu,Xiao‐Xi Guo,Xiaoyan Yang,Xiuming Cui,Chengxiao Wang
标识
DOI:10.1016/j.ijbiomac.2020.06.117
摘要
This study isolated and characterized a novel polysaccharide (PNPS-0.3) from the residue of Panax notoginseng by gradient elution. PNPS-0.3 mainly consisted of a backbone of →4)- α-D-GalAp-(1 → 4-β-L-Rhap-1 → 4)-β-D-Galp-(1 → residues, with an α-L-Araf-1 → 5)-α-L-Araf-(1 → branch connecting to the backbone at O-3 of →4-β-L-Rhap-1 → and a molecular weight of 76,655 Da. Furthermore, the adjuvant potential of PNPS-0.3 with bone marrow dendritic cells (BMDCs) was investigated. The results suggested that PNPS-0.3 could induce maturation of BMDCs by reshaping the morphology, upregulating the CD40, CD80, CD86 and MHC II membrane phenotypic markers, and by promoting the secretion of TNF-α and IL-12 proinflammatory cytokines. Moreover, PNPS-0.3 can trigger the DC-induced T-cell immune response, as indicated by the higher expressions of CD4, CD8, CD69, and MHC II in T cells with increased secretion of INF-β. Furthermore, PNPS-0.3 can bind to the pattern recognition receptors (PRR) of Toll-like receptor 4 (TLR 4), Toll-like receptor 2 (TLR 2), and mannose receptor (MR) on BMDCs. PNPS-0.3 also upregulated the expressions of Myd88, IKKβ, PP65, T-P65, and NF-κB, suggesting that the TLR4/TLR2-NF-κB signaling pathway was involved in the immunomodulatory mechanism. In conclusion, the immunoadjuvant potential of novel PNPS-0.3 was characterized, which is beneficial for the future utilization and development of P. notoginseng.
科研通智能强力驱动
Strongly Powered by AbleSci AI