非线性系统
稳健性(进化)
哈密顿-雅可比方程
数学
控制理论(社会学)
最优控制
安萨茨
维数之咒
参数统计
鲁棒控制
应用数学
贝尔曼方程
非线性控制
数学优化
计算机科学
控制(管理)
物理
基因
统计
量子力学
生物化学
人工智能
数学物理
化学
作者
Dante Kalise,Sudeep Kundu,Karl Kunisch
摘要
We propose an approach for the synthesis of robust and optimal feedback controllers for nonlinear PDEs. Our approach considers the approximation of infinite-dimensional control systems by a pseudospectral collocation method, leading to high-dimensional nonlinear dynamics. For the reduced-order model, we construct a robust feedback control based on the $\mathcal{H}_{\infty}$ control method, which requires the solution of an associated high-dimensional Hamilton--Jacobi--Isaacs nonlinear PDE. The dimensionality of the Isaacs PDE is tackled by means of a separable representation of the control system, and a polynomial approximation ansatz for the corresponding value function. Our method proves to be effective for the robust stabilization of nonlinear dynamics up to dimension $d\approx 12$. We assess the robustness and optimality features of our design over a class of nonlinear parabolic PDEs, including nonlinear advection and reaction terms. The proposed design yields a feedback controller achieving optimal stabilization and disturbance rejection properties, along with providing a modeling framework for the robust control of PDEs under parametric uncertainties.
科研通智能强力驱动
Strongly Powered by AbleSci AI