Agent-based modelling of population dynamics of two interacting social communities: migrants and natives

福利 移民 人口 预期寿命 基于Agent的模型 社会福利 人口经济学 动力学(音乐) 经济 社会学 地理 政治学 社会科学 人口学 市场经济 考古 法学 教育学
作者
E. Rovenskaya
出处
期刊:Èkonomika i matematičeskie metody [The Russian Academy of Sciences]
卷期号:56 (2): 5-5 被引量:10
标识
DOI:10.31857/s042473880009217-7
摘要

This article presents a new agent-based approach to modeling migration and demographic processes based on computer simulation of the population dynamics of two interacting communities: migrants and native people implementing different decision-making strategies. The approach proposed in the article is based on the well-known model of interaction between ‘nomads’ and ‘plowmen’ and focused on studying the behavior of societies with more complex behavior patterns than in the original model: native people and migrants, as well as their impact on social and economic and environmental systems. Moreover, members of both communities (societies), i.e. agent-migrants (that can be considered as ‘nomads’) and agent–native people (that can be considered as ‘plowmen’) reproduce the resources (job places) necessary to increase personal welfare and realize the opportunities for marriage and childbirth. Agent-migrants create resources with the lowest level of return, such as ‘low-technological job places’ and agent–native people reproduce ‘high-technological job places’ that provide a greater contribution to the level of personal welfare and economic growth in a common. The total number of such job placements is restricted by the spatial and demographic characteristics of the system. The suggested model takes into account the influence of many parameters, in particular, the life expectancy, the share of new migrants in previously immigrants, minimum levels of personal welfare and other important characteristics that reflect the behavior of members of the studied communities. At the same time, the effect of such parameters on migration and demographic processes, and the macroeconomic and environmental characteristics associated with them are studied.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
1秒前
桐桐应助小智采纳,获得10
1秒前
九川完成签到,获得积分10
1秒前
混子完成签到,获得积分10
1秒前
1秒前
2秒前
Wang完成签到,获得积分10
2秒前
星辰大海应助Ll采纳,获得10
2秒前
Jasper应助妮儿采纳,获得10
3秒前
tododoto完成签到,获得积分10
3秒前
3秒前
淙淙柔水完成签到,获得积分0
3秒前
杳鸢应助mc1220采纳,获得10
3秒前
rosa完成签到,获得积分10
3秒前
郑小七发布了新的文献求助10
4秒前
Tianxu Li完成签到,获得积分10
5秒前
5秒前
九川发布了新的文献求助10
6秒前
Lucas应助无限的隶采纳,获得10
6秒前
胡雅琴完成签到,获得积分10
6秒前
sakurai完成签到,获得积分10
7秒前
清歌扶酒关注了科研通微信公众号
7秒前
二尖瓣后叶举报ww求助涉嫌违规
7秒前
烟花应助轻松笙采纳,获得10
7秒前
沉默凡桃完成签到,获得积分10
8秒前
8秒前
luuuuuing发布了新的文献求助30
8秒前
啦啦啦完成签到,获得积分10
8秒前
小可发布了新的文献求助10
8秒前
9秒前
LKGG完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
周士乐发布了新的文献求助10
10秒前
Sunshine发布了新的文献求助10
10秒前
呼吸之野完成签到,获得积分10
11秒前
害怕的小懒虫完成签到,获得积分10
11秒前
思源应助Nefelibata采纳,获得10
12秒前
妮儿发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759