AMP0: Species-Specific Prediction of Anti-microbial Peptides Using Zero and Few Shot Learning

抗菌剂 计算生物学 抗菌肽 生物 序列(生物学) 计算机科学 机器学习 生物信息学 遗传学 微生物学 生物化学
作者
Sadaf Gull,Fayyaz Minhas
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 275-283 被引量:10
标识
DOI:10.1109/tcbb.2020.2999399
摘要

Evolution of drug-resistant microbial species is one of the major challenges to global health. Development of new antimicrobial treatments such as antimicrobial peptides needs to be accelerated to combat this threat. However, the discovery of novel antimicrobial peptides is hampered by low-throughput biochemical assays. Computational techniques can be used for rapid screening of promising antimicrobial peptide candidates prior to testing in the wet lab. The vast majority of existing antimicrobial peptide predictors are non-targeted in nature, i.e., they can predict whether a given peptide sequence is antimicrobial, but they are unable to predict whether the sequence can target a particular microbial species. In this work, we have used zero and few shot machine learning to develop a targeted antimicrobial peptide activity predictor called AMP0. The proposed predictor takes the sequence of a peptide and any N/C-termini modifications together with the genomic sequence of a microbial species to generate targeted predictions. Cross-validation results show that the proposed scheme is particularly effective for targeted antimicrobial prediction in comparison to existing approaches and can be used for screening potential antimicrobial peptides in a targeted manner with only a small number of training examples for novel species. AMP0 webserver is available at http://ampzero.pythonanywhere.com.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
不懈奋进应助科研通管家采纳,获得30
3秒前
orixero应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
147完成签到,获得积分10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
SONG给SONG的求助进行了留言
3秒前
absb发布了新的文献求助10
4秒前
段段砖发布了新的文献求助10
4秒前
鲸鱼发布了新的文献求助30
5秒前
5秒前
暴躁的梦发布了新的文献求助10
5秒前
6秒前
CipherSage应助小王采纳,获得10
7秒前
7秒前
iNk应助galaxy.mio采纳,获得20
7秒前
7秒前
8秒前
8秒前
HHXYY完成签到 ,获得积分10
8秒前
8秒前
黄瓜双耳拌腐竹完成签到,获得积分10
8秒前
8秒前
英姑应助moyuqilin采纳,获得10
9秒前
所所应助优美熠悦采纳,获得10
10秒前
还我益达发布了新的文献求助10
10秒前
cc发布了新的文献求助10
12秒前
12秒前
Owen应助王洋采纳,获得200
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956435
求助须知:如何正确求助?哪些是违规求助? 3502556
关于积分的说明 11108554
捐赠科研通 3233240
什么是DOI,文献DOI怎么找? 1787203
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105