Enhanced 3DTV Regularization and Its Applications on HSI Denoising and Compressed Sensing

计算机科学 高光谱成像 子空间拓扑 人工智能 全变差去噪 期限(时间) 降噪 正规化(语言学) 压缩传感 计算机视觉 模式识别(心理学) 算法 量子力学 物理
作者
Jiangjun Peng,Qi Xie,Qian Zhao,Yao Wang,Yee Leung,Deyu Meng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 7889-7903 被引量:97
标识
DOI:10.1109/tip.2020.3007840
摘要

The total variation (TV) is a powerful regularization term encoding the local smoothness prior structure underlying images. By combining the TV regularization term with low rank prior, the 3D total variation (3DTV) regularizer has achieved advanced performance in general hyperspectral image (HSI) processing tasks. Intrinsically, 3DTV assumes i.i.d. sparsity structures on all bands of the gradient maps calculated along the spectrum and space of an HSI. This, however, largely deviates from the real-world cases, where the gradient maps generally have different while correlated gradient map structures across all bands. To alleviate this issue, we propose an enhanced 3DTV (E-3DTV) regularization term beyond the conventional. Instead of imposing sparsity on gradient maps themselves, the new term calculates sparsity on the subspace bases on gradient maps along all bands of an HSI, which naturally encodes the correlation and difference among all these bands, and thus more faithfully reflects the insightful configurations of an HSI. The E-3DTV term can easily replace the conventional 3DTV term and be embedded into an HSI processing model to ameliorate its performance. We made such attempts on two typical related tasks: HSI denoising and compressed sensing. The superiority of our proposed method is substantiated by extensive experiments on synthetic and real HSI data, visually and quantitatively on both tasks, as compared with current state-of-the-arts. The code of our algorithm is released at https://github.com/andrew-pengjj/Enhanced-3DTV.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想打出冰球的太阳系完成签到,获得积分10
1秒前
Ampace小老弟完成签到 ,获得积分10
2秒前
独特海白完成签到,获得积分10
2秒前
勤奋颜演完成签到,获得积分10
3秒前
yidemeihaoshijie完成签到 ,获得积分10
3秒前
大个应助qhy123采纳,获得10
3秒前
脑洞疼应助666采纳,获得10
3秒前
a远离霓虹完成签到,获得积分10
4秒前
振耳欲聋的沉默完成签到,获得积分10
4秒前
FashionBoy应助Emma采纳,获得10
5秒前
汉堡包应助阳子采纳,获得10
6秒前
xx完成签到,获得积分10
6秒前
aaa完成签到,获得积分10
6秒前
马里奥好难完成签到 ,获得积分10
7秒前
标致的问晴完成签到,获得积分10
7秒前
领导范儿应助drughunter009采纳,获得10
7秒前
Hayat应助wq采纳,获得10
9秒前
飞翔的蒲公英完成签到,获得积分10
10秒前
rosalieshi应助亲爱的安德烈采纳,获得30
11秒前
Vesper完成签到,获得积分10
12秒前
13秒前
万能图书馆应助过滤膜采纳,获得10
14秒前
zn315315完成签到,获得积分10
15秒前
花痴的溪灵完成签到,获得积分20
15秒前
wuwuhu完成签到,获得积分10
16秒前
17秒前
wlei完成签到,获得积分10
17秒前
18秒前
ssm完成签到,获得积分10
19秒前
20秒前
Zuo关注了科研通微信公众号
20秒前
wuxunxun2015完成签到,获得积分10
20秒前
山茶发布了新的文献求助10
20秒前
伴你笑发布了新的文献求助10
21秒前
Ben完成签到,获得积分10
22秒前
愉快凌晴完成签到,获得积分10
23秒前
BK1BK22完成签到 ,获得积分10
23秒前
YY完成签到 ,获得积分20
23秒前
drughunter009发布了新的文献求助10
24秒前
无足鸟完成签到,获得积分10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162753
求助须知:如何正确求助?哪些是违规求助? 2813664
关于积分的说明 7901471
捐赠科研通 2473244
什么是DOI,文献DOI怎么找? 1316693
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175