Enhanced 3DTV Regularization and Its Applications on HSI Denoising and Compressed Sensing

计算机科学 高光谱成像 子空间拓扑 人工智能 全变差去噪 期限(时间) 降噪 正规化(语言学) 计算机视觉 模式识别(心理学) 算法 量子力学 物理
作者
Jiangjun Peng,Qi Xie,Qian Zhao,Yao Wang,Yee Leung,Deyu Meng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 7889-7903 被引量:124
标识
DOI:10.1109/tip.2020.3007840
摘要

The total variation (TV) is a powerful regularization term encoding the local smoothness prior structure underlying images. By combining the TV regularization term with low rank prior, the 3D total variation (3DTV) regularizer has achieved advanced performance in general hyperspectral image (HSI) processing tasks. Intrinsically, 3DTV assumes i.i.d. sparsity structures on all bands of the gradient maps calculated along the spectrum and space of an HSI. This, however, largely deviates from the real-world cases, where the gradient maps generally have different while correlated gradient map structures across all bands. To alleviate this issue, we propose an enhanced 3DTV (E-3DTV) regularization term beyond the conventional. Instead of imposing sparsity on gradient maps themselves, the new term calculates sparsity on the subspace bases on gradient maps along all bands of an HSI, which naturally encodes the correlation and difference among all these bands, and thus more faithfully reflects the insightful configurations of an HSI. The E-3DTV term can easily replace the conventional 3DTV term and be embedded into an HSI processing model to ameliorate its performance. We made such attempts on two typical related tasks: HSI denoising and compressed sensing. The superiority of our proposed method is substantiated by extensive experiments on synthetic and real HSI data, visually and quantitatively on both tasks, as compared with current state-of-the-arts. The code of our algorithm is released at https://github.com/andrew-pengjj/Enhanced-3DTV.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Evnnnn完成签到,获得积分10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
asdfqwer应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
Billy应助科研通管家采纳,获得30
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
背后海亦应助科研通管家采纳,获得20
1秒前
Owen应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
flymove发布了新的文献求助10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
马仔酷酷地完成签到,获得积分10
1秒前
meng17应助科研通管家采纳,获得10
1秒前
meng17应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
安桥应助科研通管家采纳,获得20
2秒前
背后海亦应助科研通管家采纳,获得20
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
深情安青应助典雅的俊驰采纳,获得10
2秒前
lara应助小杨爱学习采纳,获得30
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
神勇代荷完成签到,获得积分10
3秒前
巴拉巴拉发布了新的文献求助10
4秒前
Wl0115完成签到,获得积分10
4秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149