Enhanced 3DTV Regularization and Its Applications on HSI Denoising and Compressed Sensing

计算机科学 高光谱成像 子空间拓扑 人工智能 全变差去噪 期限(时间) 降噪 正规化(语言学) 压缩传感 计算机视觉 模式识别(心理学) 算法 物理 量子力学
作者
Jiangjun Peng,Qi Xie,Qian Zhao,Yao Wang,Yee Leung,Deyu Meng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 7889-7903 被引量:97
标识
DOI:10.1109/tip.2020.3007840
摘要

The total variation (TV) is a powerful regularization term encoding the local smoothness prior structure underlying images. By combining the TV regularization term with low rank prior, the 3D total variation (3DTV) regularizer has achieved advanced performance in general hyperspectral image (HSI) processing tasks. Intrinsically, 3DTV assumes i.i.d. sparsity structures on all bands of the gradient maps calculated along the spectrum and space of an HSI. This, however, largely deviates from the real-world cases, where the gradient maps generally have different while correlated gradient map structures across all bands. To alleviate this issue, we propose an enhanced 3DTV (E-3DTV) regularization term beyond the conventional. Instead of imposing sparsity on gradient maps themselves, the new term calculates sparsity on the subspace bases on gradient maps along all bands of an HSI, which naturally encodes the correlation and difference among all these bands, and thus more faithfully reflects the insightful configurations of an HSI. The E-3DTV term can easily replace the conventional 3DTV term and be embedded into an HSI processing model to ameliorate its performance. We made such attempts on two typical related tasks: HSI denoising and compressed sensing. The superiority of our proposed method is substantiated by extensive experiments on synthetic and real HSI data, visually and quantitatively on both tasks, as compared with current state-of-the-arts. The code of our algorithm is released at https://github.com/andrew-pengjj/Enhanced-3DTV.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助gomm采纳,获得10
刚刚
liu发布了新的文献求助10
2秒前
楠瓜完成签到,获得积分10
2秒前
慕青应助聪慧雪糕采纳,获得10
4秒前
4秒前
xkhxh完成签到 ,获得积分10
4秒前
111完成签到,获得积分10
4秒前
内卷没有赢家完成签到,获得积分10
4秒前
星辰大海应助可达鸭采纳,获得30
5秒前
韩晚渔完成签到 ,获得积分10
8秒前
杨雨帆发布了新的文献求助10
8秒前
小雨完成签到,获得积分10
11秒前
13秒前
情怀应助杨雨帆采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得50
14秒前
xzy998应助科研通管家采纳,获得10
14秒前
pcr163应助科研通管家采纳,获得50
14秒前
ggxhygr应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
pcr163应助科研通管家采纳,获得50
15秒前
16秒前
蓝天海完成签到,获得积分0
18秒前
19秒前
聪慧雪糕发布了新的文献求助10
20秒前
谢香辣发布了新的文献求助10
20秒前
共享精神应助walden采纳,获得10
20秒前
20秒前
Adzuki0812完成签到 ,获得积分10
20秒前
温暖厉发布了新的文献求助10
22秒前
6633发布了新的文献求助10
23秒前
科研通AI5应助923148045采纳,获得10
25秒前
聂白晴发布了新的文献求助10
25秒前
自信的九娘完成签到,获得积分10
27秒前
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967