Enhanced 3DTV Regularization and Its Applications on HSI Denoising and Compressed Sensing

计算机科学 高光谱成像 子空间拓扑 人工智能 全变差去噪 期限(时间) 降噪 正规化(语言学) 计算机视觉 模式识别(心理学) 算法 物理 量子力学
作者
Jiangjun Peng,Qi Xie,Qian Zhao,Yao Wang,Yee Leung,Deyu Meng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 7889-7903 被引量:124
标识
DOI:10.1109/tip.2020.3007840
摘要

The total variation (TV) is a powerful regularization term encoding the local smoothness prior structure underlying images. By combining the TV regularization term with low rank prior, the 3D total variation (3DTV) regularizer has achieved advanced performance in general hyperspectral image (HSI) processing tasks. Intrinsically, 3DTV assumes i.i.d. sparsity structures on all bands of the gradient maps calculated along the spectrum and space of an HSI. This, however, largely deviates from the real-world cases, where the gradient maps generally have different while correlated gradient map structures across all bands. To alleviate this issue, we propose an enhanced 3DTV (E-3DTV) regularization term beyond the conventional. Instead of imposing sparsity on gradient maps themselves, the new term calculates sparsity on the subspace bases on gradient maps along all bands of an HSI, which naturally encodes the correlation and difference among all these bands, and thus more faithfully reflects the insightful configurations of an HSI. The E-3DTV term can easily replace the conventional 3DTV term and be embedded into an HSI processing model to ameliorate its performance. We made such attempts on two typical related tasks: HSI denoising and compressed sensing. The superiority of our proposed method is substantiated by extensive experiments on synthetic and real HSI data, visually and quantitatively on both tasks, as compared with current state-of-the-arts. The code of our algorithm is released at https://github.com/andrew-pengjj/Enhanced-3DTV.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
青烟发布了新的文献求助10
3秒前
顾矜应助dynamoo采纳,获得200
4秒前
5秒前
VDC应助Jannie采纳,获得30
8秒前
科目三应助姜露萍采纳,获得10
8秒前
elsa嘻嘻完成签到 ,获得积分10
8秒前
Creeper_dd完成签到 ,获得积分10
8秒前
9秒前
博士加油完成签到,获得积分10
9秒前
MYJ应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
MYJ应助科研通管家采纳,获得50
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
魔幻的觅珍完成签到,获得积分10
13秒前
知珩发布了新的文献求助10
16秒前
科研通AI5应助LS采纳,获得10
16秒前
18秒前
桐桐应助cherry采纳,获得10
19秒前
是啊余啊完成签到,获得积分10
21秒前
无花果应助搞搞科研采纳,获得10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
26秒前
搞搞科研完成签到,获得积分10
27秒前
28秒前
科研通AI5应助科研小白采纳,获得10
29秒前
syiimo完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601531
求助须知:如何正确求助?哪些是违规求助? 4011197
关于积分的说明 12418641
捐赠科研通 3691181
什么是DOI,文献DOI怎么找? 2034916
邀请新用户注册赠送积分活动 1068216
科研通“疑难数据库(出版商)”最低求助积分说明 952765