PoGB-pred: Prediction of Antifreeze Proteins Sequences Using Amino Acid Composition with Feature Selection Followed by a Sequential-based Ensemble Approach

UniProt公司 抗冻蛋白 伪氨基酸组成 计算机科学 特征选择 防冻剂 人工智能 计算生物学 生物信息学 主成分分析 蛋白质测序 模式识别(心理学) 蛋白质数据库 支持向量机 机器学习 生物 氨基酸 肽序列 生物化学 化学 有机化学 基因 二肽
作者
Muhammad Affan Alim,Abdul Rafay,Imran Naseem
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:16 (3): 446-456 被引量:17
标识
DOI:10.2174/1574893615999200707141926
摘要

Background: Proteins contribute significantly in every task of cellular life. Their functions encompass the building and repairing of tissues in human bodies and other organisms. Hence they are the building blocks of bones, muscles, cartilage, skin, and blood. Similarly, antifreeze proteins are of prime significance for organisms that live in very cold areas. With the help of these proteins, the cold water organisms can survive below zero temperature and resist the water crystallization process, which may cause the rupture in the internal cells and tissues. AFP’s have also attracted attention and interest in food industries and cryopreservation. Objective: With the increase in the availability of genomic sequence data of protein, an automated and sophisticated tool for AFP recognition and identification is in dire need. The sequence and structures of AFP are highly distinct, therefore, most of the proposed methods fail to show promising results on different structures. A consolidated method is proposed to produce the competitive performance on highly distinct AFP structure. Methods: In this study, machine learning-based algorithms including Principal Component Analysis (PCA) followed by Gradient Boosting (GB) were proposed to be used for anti-freeze protein identification. To analyze the performance and validation of the proposed model, various combinations of two segments' composition of amino acid and dipeptides are used. PCA, in particular, is proposed for dimension reduction and high variance retaining of data, which is followed by an ensemble method named gradient boosting for modeling and classification. Results: The proposed method obtained the superfluous performance on PDB, Pfam and Uniprot dataset as compared with the RAFP-Pred method. In experiment-3, by utilizing only 150 PCA components a high accuracy of 89.63 was achieved which is superior to the 87.41 utilizing 300 significant features reported for the RAFP-Pred method. Experiment-2 is conducted using two different dataset such that non-AFP from the PISCES server and AFPs from Protein data bank. In this experiment-2, our proposed method attained high sensitivity of 79.16 which is 12.50 better than state-of-the-art the RAFP-pred method. Conclusion: AFPs have a common function with distinct structure. Therefore, the development of a single model for different sequences often fails to AFPs. A robust results have been shown by our proposed model on the diversity of training and testing dataset. The results of the proposed model outperformed compared to the previous AFPs prediction method such as RAFP-Pred. Our model consists of PCA for dimension reduction followed by gradient boosting for classification. Due to simplicity, scalability properties and high performance result our model can be easily extended for analyzing the proteomic and genomic dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyq2006完成签到,获得积分10
刚刚
斯文败类应助王星星采纳,获得10
1秒前
油菜的星星完成签到,获得积分10
1秒前
2秒前
halabouqii完成签到,获得积分10
2秒前
李爱国应助满意采纳,获得10
3秒前
安然无恙应助平常的紫蓝采纳,获得10
3秒前
Inory007发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
zhan20200503完成签到,获得积分10
8秒前
这个文献你有么完成签到,获得积分10
9秒前
小二郎应助lan采纳,获得10
9秒前
李颜龙完成签到,获得积分10
11秒前
liangye2222发布了新的文献求助10
11秒前
与山发布了新的文献求助10
12秒前
12秒前
高手如林完成签到,获得积分10
13秒前
高铭泽完成签到,获得积分20
13秒前
Hengjian_Pu完成签到,获得积分10
13秒前
友好胜完成签到 ,获得积分10
13秒前
坦率白萱发布了新的文献求助10
14秒前
方翔应助林白采纳,获得100
14秒前
量子星尘发布了新的文献求助10
14秒前
Vresty完成签到,获得积分10
16秒前
糯米团的完成签到 ,获得积分10
18秒前
18秒前
Yunsong发布了新的文献求助10
18秒前
黑猫完成签到,获得积分20
19秒前
热心市民小红花应助千余采纳,获得10
20秒前
20秒前
21秒前
lan完成签到,获得积分10
21秒前
火星上念梦发布了新的文献求助150
21秒前
Enckson完成签到,获得积分10
22秒前
火星上的羽毛完成签到,获得积分10
23秒前
留留完成签到,获得积分10
24秒前
lan发布了新的文献求助10
24秒前
我爱金哥发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035