PoGB-pred: Prediction of Antifreeze Proteins Sequences Using Amino Acid Composition with Feature Selection Followed by a Sequential-based Ensemble Approach

UniProt公司 抗冻蛋白 伪氨基酸组成 计算机科学 特征选择 防冻剂 人工智能 计算生物学 生物信息学 主成分分析 蛋白质测序 模式识别(心理学) 蛋白质数据库 支持向量机 机器学习 生物 氨基酸 肽序列 生物化学 化学 有机化学 基因 二肽
作者
Muhammad Affan Alim,Abdul Rafay,Imran Naseem
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:16 (3): 446-456 被引量:17
标识
DOI:10.2174/1574893615999200707141926
摘要

Background: Proteins contribute significantly in every task of cellular life. Their functions encompass the building and repairing of tissues in human bodies and other organisms. Hence they are the building blocks of bones, muscles, cartilage, skin, and blood. Similarly, antifreeze proteins are of prime significance for organisms that live in very cold areas. With the help of these proteins, the cold water organisms can survive below zero temperature and resist the water crystallization process, which may cause the rupture in the internal cells and tissues. AFP’s have also attracted attention and interest in food industries and cryopreservation. Objective: With the increase in the availability of genomic sequence data of protein, an automated and sophisticated tool for AFP recognition and identification is in dire need. The sequence and structures of AFP are highly distinct, therefore, most of the proposed methods fail to show promising results on different structures. A consolidated method is proposed to produce the competitive performance on highly distinct AFP structure. Methods: In this study, machine learning-based algorithms including Principal Component Analysis (PCA) followed by Gradient Boosting (GB) were proposed to be used for anti-freeze protein identification. To analyze the performance and validation of the proposed model, various combinations of two segments' composition of amino acid and dipeptides are used. PCA, in particular, is proposed for dimension reduction and high variance retaining of data, which is followed by an ensemble method named gradient boosting for modeling and classification. Results: The proposed method obtained the superfluous performance on PDB, Pfam and Uniprot dataset as compared with the RAFP-Pred method. In experiment-3, by utilizing only 150 PCA components a high accuracy of 89.63 was achieved which is superior to the 87.41 utilizing 300 significant features reported for the RAFP-Pred method. Experiment-2 is conducted using two different dataset such that non-AFP from the PISCES server and AFPs from Protein data bank. In this experiment-2, our proposed method attained high sensitivity of 79.16 which is 12.50 better than state-of-the-art the RAFP-pred method. Conclusion: AFPs have a common function with distinct structure. Therefore, the development of a single model for different sequences often fails to AFPs. A robust results have been shown by our proposed model on the diversity of training and testing dataset. The results of the proposed model outperformed compared to the previous AFPs prediction method such as RAFP-Pred. Our model consists of PCA for dimension reduction followed by gradient boosting for classification. Due to simplicity, scalability properties and high performance result our model can be easily extended for analyzing the proteomic and genomic dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷炫的太阳完成签到,获得积分10
1秒前
上好佳发布了新的文献求助10
1秒前
1秒前
科研通AI6应助南七七采纳,获得10
1秒前
1秒前
1秒前
打打应助明天见采纳,获得10
1秒前
qbyang发布了新的文献求助10
1秒前
斯文败类应助RichieXU采纳,获得10
2秒前
里应为完成签到,获得积分10
2秒前
Rui_Zhang发布了新的文献求助50
2秒前
2秒前
LZZZZZQ发布了新的文献求助10
2秒前
自由散漫大信球关注了科研通微信公众号
2秒前
申申如也发布了新的文献求助10
3秒前
hua完成签到,获得积分10
3秒前
3秒前
自由如风完成签到 ,获得积分10
3秒前
小马甲应助急雪回风采纳,获得10
3秒前
4秒前
4秒前
自由人发布了新的文献求助10
4秒前
忧郁水彤发布了新的文献求助10
5秒前
浮游应助狄鹤轩采纳,获得10
5秒前
十令发布了新的文献求助10
5秒前
里应为发布了新的文献求助10
6秒前
hua发布了新的文献求助10
6秒前
善学以致用应助jzd1991采纳,获得10
6秒前
xl完成签到,获得积分10
6秒前
6秒前
duyu完成签到,获得积分10
7秒前
不安依丝完成签到,获得积分10
7秒前
7秒前
研友_Lpa2On发布了新的文献求助10
7秒前
7秒前
qzs发布了新的文献求助10
8秒前
8秒前
852应助Villanellel采纳,获得10
8秒前
duyu发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4874504
求助须知:如何正确求助?哪些是违规求助? 4163770
关于积分的说明 12915000
捐赠科研通 3920917
什么是DOI,文献DOI怎么找? 2152576
邀请新用户注册赠送积分活动 1170846
关于科研通互助平台的介绍 1074699