PoGB-pred: Prediction of Antifreeze Proteins Sequences Using Amino Acid Composition with Feature Selection Followed by a Sequential-based Ensemble Approach

UniProt公司 抗冻蛋白 伪氨基酸组成 计算机科学 特征选择 防冻剂 人工智能 计算生物学 生物信息学 主成分分析 蛋白质测序 模式识别(心理学) 蛋白质数据库 支持向量机 机器学习 生物 氨基酸 肽序列 生物化学 化学 有机化学 基因 二肽
作者
Muhammad Affan Alim,Abdul Rafay,Imran Naseem
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:16 (3): 446-456 被引量:17
标识
DOI:10.2174/1574893615999200707141926
摘要

Background: Proteins contribute significantly in every task of cellular life. Their functions encompass the building and repairing of tissues in human bodies and other organisms. Hence they are the building blocks of bones, muscles, cartilage, skin, and blood. Similarly, antifreeze proteins are of prime significance for organisms that live in very cold areas. With the help of these proteins, the cold water organisms can survive below zero temperature and resist the water crystallization process, which may cause the rupture in the internal cells and tissues. AFP’s have also attracted attention and interest in food industries and cryopreservation. Objective: With the increase in the availability of genomic sequence data of protein, an automated and sophisticated tool for AFP recognition and identification is in dire need. The sequence and structures of AFP are highly distinct, therefore, most of the proposed methods fail to show promising results on different structures. A consolidated method is proposed to produce the competitive performance on highly distinct AFP structure. Methods: In this study, machine learning-based algorithms including Principal Component Analysis (PCA) followed by Gradient Boosting (GB) were proposed to be used for anti-freeze protein identification. To analyze the performance and validation of the proposed model, various combinations of two segments' composition of amino acid and dipeptides are used. PCA, in particular, is proposed for dimension reduction and high variance retaining of data, which is followed by an ensemble method named gradient boosting for modeling and classification. Results: The proposed method obtained the superfluous performance on PDB, Pfam and Uniprot dataset as compared with the RAFP-Pred method. In experiment-3, by utilizing only 150 PCA components a high accuracy of 89.63 was achieved which is superior to the 87.41 utilizing 300 significant features reported for the RAFP-Pred method. Experiment-2 is conducted using two different dataset such that non-AFP from the PISCES server and AFPs from Protein data bank. In this experiment-2, our proposed method attained high sensitivity of 79.16 which is 12.50 better than state-of-the-art the RAFP-pred method. Conclusion: AFPs have a common function with distinct structure. Therefore, the development of a single model for different sequences often fails to AFPs. A robust results have been shown by our proposed model on the diversity of training and testing dataset. The results of the proposed model outperformed compared to the previous AFPs prediction method such as RAFP-Pred. Our model consists of PCA for dimension reduction followed by gradient boosting for classification. Due to simplicity, scalability properties and high performance result our model can be easily extended for analyzing the proteomic and genomic dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
不必要再讨论适合与否完成签到,获得积分0
2秒前
无情夏寒完成签到 ,获得积分10
3秒前
慕青应助马士全采纳,获得10
4秒前
xuzj应助科研通管家采纳,获得10
4秒前
Rubby应助科研通管家采纳,获得30
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
shiizii应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
ludong_0应助科研通管家采纳,获得10
5秒前
YeeYee发布了新的文献求助10
5秒前
冷酷的松思完成签到,获得积分10
5秒前
zgt01发布了新的文献求助10
6秒前
zhang完成签到,获得积分10
6秒前
江中完成签到 ,获得积分10
8秒前
8秒前
阿玖完成签到 ,获得积分10
9秒前
jiaolulu发布了新的文献求助10
11秒前
踏雪飞鸿完成签到,获得积分10
12秒前
hannah完成签到,获得积分10
12秒前
songvv发布了新的文献求助10
13秒前
一一一应助Bin_Liu采纳,获得10
14秒前
麻果完成签到,获得积分10
16秒前
OER完成签到,获得积分10
16秒前
伦语完成签到,获得积分20
16秒前
中陆完成签到,获得积分10
17秒前
18秒前
莫西莫西完成签到,获得积分10
20秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
xjh完成签到,获得积分10
23秒前
23秒前
lbnzd8g完成签到,获得积分10
25秒前
中海完成签到,获得积分10
25秒前
Ww完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022