已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PoGB-pred: Prediction of Antifreeze Proteins Sequences Using Amino Acid Composition with Feature Selection Followed by a Sequential-based Ensemble Approach

UniProt公司 抗冻蛋白 伪氨基酸组成 计算机科学 特征选择 防冻剂 人工智能 计算生物学 生物信息学 主成分分析 蛋白质测序 模式识别(心理学) 蛋白质数据库 支持向量机 机器学习 生物 氨基酸 肽序列 生物化学 化学 有机化学 基因 二肽
作者
Muhammad Affan Alim,Abdul Rafay,Imran Naseem
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:16 (3): 446-456 被引量:17
标识
DOI:10.2174/1574893615999200707141926
摘要

Background: Proteins contribute significantly in every task of cellular life. Their functions encompass the building and repairing of tissues in human bodies and other organisms. Hence they are the building blocks of bones, muscles, cartilage, skin, and blood. Similarly, antifreeze proteins are of prime significance for organisms that live in very cold areas. With the help of these proteins, the cold water organisms can survive below zero temperature and resist the water crystallization process, which may cause the rupture in the internal cells and tissues. AFP’s have also attracted attention and interest in food industries and cryopreservation. Objective: With the increase in the availability of genomic sequence data of protein, an automated and sophisticated tool for AFP recognition and identification is in dire need. The sequence and structures of AFP are highly distinct, therefore, most of the proposed methods fail to show promising results on different structures. A consolidated method is proposed to produce the competitive performance on highly distinct AFP structure. Methods: In this study, machine learning-based algorithms including Principal Component Analysis (PCA) followed by Gradient Boosting (GB) were proposed to be used for anti-freeze protein identification. To analyze the performance and validation of the proposed model, various combinations of two segments' composition of amino acid and dipeptides are used. PCA, in particular, is proposed for dimension reduction and high variance retaining of data, which is followed by an ensemble method named gradient boosting for modeling and classification. Results: The proposed method obtained the superfluous performance on PDB, Pfam and Uniprot dataset as compared with the RAFP-Pred method. In experiment-3, by utilizing only 150 PCA components a high accuracy of 89.63 was achieved which is superior to the 87.41 utilizing 300 significant features reported for the RAFP-Pred method. Experiment-2 is conducted using two different dataset such that non-AFP from the PISCES server and AFPs from Protein data bank. In this experiment-2, our proposed method attained high sensitivity of 79.16 which is 12.50 better than state-of-the-art the RAFP-pred method. Conclusion: AFPs have a common function with distinct structure. Therefore, the development of a single model for different sequences often fails to AFPs. A robust results have been shown by our proposed model on the diversity of training and testing dataset. The results of the proposed model outperformed compared to the previous AFPs prediction method such as RAFP-Pred. Our model consists of PCA for dimension reduction followed by gradient boosting for classification. Due to simplicity, scalability properties and high performance result our model can be easily extended for analyzing the proteomic and genomic dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Thunbay发布了新的文献求助10
4秒前
酷酷涫完成签到 ,获得积分0
4秒前
儿学化学打断腿完成签到,获得积分10
6秒前
潘西完成签到,获得积分10
10秒前
nnnd77发布了新的文献求助10
11秒前
junkook完成签到 ,获得积分10
13秒前
yaoyao发布了新的文献求助10
14秒前
ZHU009完成签到,获得积分10
15秒前
18秒前
ZG完成签到,获得积分10
19秒前
LJL完成签到 ,获得积分10
21秒前
21秒前
ZHU009发布了新的文献求助10
23秒前
FashionBoy应助yaoyao采纳,获得10
24秒前
xiaoxiaoluo完成签到,获得积分10
27秒前
上官若男应助ZG采纳,获得10
28秒前
flash完成签到,获得积分10
31秒前
可爱的函函应助高高采纳,获得10
32秒前
1556完成签到,获得积分10
35秒前
bobo完成签到 ,获得积分10
37秒前
HuSP完成签到,获得积分10
38秒前
CipherSage应助科研通管家采纳,获得10
39秒前
浅尝离白应助科研通管家采纳,获得30
39秒前
桐桐应助科研通管家采纳,获得10
39秒前
Lucas应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
HuSP发布了新的文献求助10
42秒前
晓风拂楠完成签到,获得积分10
46秒前
子翱完成签到 ,获得积分10
47秒前
劳健龙完成签到 ,获得积分10
47秒前
49秒前
zishuo发布了新的文献求助10
50秒前
靖柔完成签到 ,获得积分10
51秒前
xiaowang完成签到 ,获得积分10
52秒前
寒冷苗条应助mywyj采纳,获得10
54秒前
zzz完成签到 ,获得积分10
54秒前
爱静静完成签到,获得积分0
57秒前
脑洞疼应助神勇麦片采纳,获得10
58秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179770
求助须知:如何正确求助?哪些是违规求助? 2830272
关于积分的说明 7976040
捐赠科研通 2491754
什么是DOI,文献DOI怎么找? 1328872
科研通“疑难数据库(出版商)”最低求助积分说明 635561
版权声明 602927