脑灌注不足
血脑屏障
机制(生物学)
灌注
认知障碍
脑灌注压
神经科学
脑血流
灌注扫描
认知
医学
心理学
心脏病学
中枢神经系统
认识论
哲学
作者
Changhua Qu,Linling Xu,Jun Shen,Yaqing Li,Chujie Qu,Hao Song,Junjian Zhang
标识
DOI:10.1016/j.bbr.2019.112385
摘要
Chronic cerebral hypoperfusion (CCH) is a common pathophysiological basis for Alzheimer’s Disease and vascular dementia in the early stages. It has been confirmed that blood-brain barrier (BBB) destruction is a key factor in CCH-related cognitive impairment. Here we explored the effects of an enriched environment (EE) intervention on CCH-induced BBB destruction and cognitive impairment, and the underlying mechanism. Rats in the EE group were exposed to an EE, while the standard environment (SE) group was maintained in a standard cage with bedding but no other objects. On day 14, CCH was induced via permanent bilateral common carotid artery occlusion (2VO). Next, Evans blue (EB) leakage in the hippocampus was measured by chemical colorimetry to dynamically evaluate BBB permeability. On day 28, the BBB ultrastructure was observed using transmission electron microscopy. The expression levels of BBB integrity-related proteins, matrix metalloproteinases-2/-9 (MMP-2/-9), and the classical Wnt/β-catenin signaling pathway-related proteins were detected using western-blotting techniques. On day 43, cognitive function was assessed using the Morris water maze. After 2VO, CCH rats exposed to the SE developed obvious cognitive impairment and BBB destruction. BBB damage was manifested through increased EB leakage, ultrastructural destruction, degradation of BBB integrity-related proteins, and up-regulation of MMP-2/-9. These changes were significantly alleviated after the EE intervention. In addition, EEs activated the Wnt/β-catenin signaling pathway in the hippocampus of rats. These results suggest that protection of the BBB may be a novel mechanism by which EEs ameliorate CCH-induced cognitive impairment, and this effect may be related to the activation of the Wnt/β-catenin pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI