碳纳米管
材料科学
氧化还原
杂原子
铈
石墨
化学气相沉积
纳米技术
电极
碳纤维
化学工程
热解
化学
复合材料
有机化学
冶金
物理化学
工程类
复合数
戒指(化学)
作者
Zhaolin Na,Ruifang Yao,Qing Yan,Xudong Sun,Gang Huang
出处
期刊:Research
[AAAS00]
日期:2019-01-01
卷期号:2019
被引量:8
标识
DOI:10.34133/2019/3616178
摘要
Carbon nanotubes (CNTs) possess remarkable mechanical, electrical, thermal, and optical properties that predestine them for numerous potential applications. The conventional chemical vapor deposition (CVD) route for the production of CNTs, however, suffers from costly and complex issues. Herein, we demonstrate a general and high-yield strategy to grow nitrogen-doped CNTs (NCNTs) on three-dimensional (3D) graphite felt (GF) substrates, through a direct thermal pyrolysis process simply using a common tube furnace, instead of the costly and complex CVD method. Specifically, the NCNTs-decorated GF (NCNT-GF) electrode possesses enhanced electrocatalytic performance towards cerium redox reactions, mainly due to the catalytic effect of N atoms doped into NCNTs, and ingenious and hierarchical 3D architecture of the NCNT-GF. As a result, the cell with the NCNT-GF serving as a positive electrode shows the improved energy efficiency with increases of about 53.4% and 43.8% over the pristine GF and the acidly treated GF at a high charge/discharge rate of 30 mA cm-2, respectively. Moreover, the as-prepared NCNT catalyst-enhanced electrode is found to be highly robust and should enable a long-term cycle without detectable efficiency loss after 500 cycles. The viable synthetic strategy reported in this study will contribute to the further development of more active heteroatom-doped CNTs for redox flow batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI