CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection

计算机科学 预处理器 学习迁移 2019年冠状病毒病(COVID-19) 深度学习 人工智能 建筑 分割 人工神经网络 模式识别(心理学) 机器学习 传染病(医学专业) 疾病 医学 病理 地理 考古
作者
Muhammet Fatih Aslan,Muhammed Fahri Ünlerşen,Kadir Sabancı,Akif Durdu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:98: 106912-106912 被引量:290
标识
DOI:10.1016/j.asoc.2020.106912
摘要

Coronavirus disease 2019 (COVID-2019), which emerged in Wuhan, China in 2019 and has spread rapidly all over the world since the beginning of 2020, has infected millions of people and caused many deaths. For this pandemic, which is still in effect, mobilization has started all over the world, and various restrictions and precautions have been taken to prevent the spread of this disease. In addition, infected people must be identified in order to control the infection. However, due to the inadequate number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, Chest computed tomography (CT) becomes a popular tool to assist the diagnosis of COVID-19. In this study, two deep learning architectures have been proposed that automatically detect positive COVID-19 cases using Chest CT X-ray images. Lung segmentation (preprocessing) in CT images, which are given as input to these proposed architectures, is performed automatically with Artificial Neural Networks (ANN). Since both architectures contain AlexNet architecture, the recommended method is a transfer learning application. However, the second proposed architecture is a hybrid structure as it contains a Bidirectional Long Short-Term Memories (BiLSTM) layer, which also takes into account the temporal properties. While the COVID-19 classification accuracy of the first architecture is 98.14%, this value is 98.70% in the second hybrid architecture. The results prove that the proposed architecture shows outstanding success in infection detection and, therefore this study contributes to previous studies in terms of both deep architectural design and high classification success.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助彩虹采纳,获得10
刚刚
ured发布了新的文献求助10
2秒前
2秒前
情怀应助阿恺采纳,获得10
2秒前
可靠的子默完成签到 ,获得积分20
5秒前
5秒前
pp完成签到,获得积分10
6秒前
CipherSage应助downloadpapers采纳,获得10
6秒前
隐形问萍完成签到,获得积分10
11秒前
大方嵩完成签到,获得积分10
12秒前
隐形问萍发布了新的文献求助10
14秒前
科研通AI2S应助中中采纳,获得10
15秒前
Assmpsit发布了新的文献求助10
18秒前
后陡门的夏天完成签到 ,获得积分10
25秒前
25秒前
胡胡发布了新的文献求助10
29秒前
一树春风完成签到,获得积分20
29秒前
zwj发布了新的文献求助10
29秒前
圆圈应助可爱以冬采纳,获得10
30秒前
NexusExplorer应助可爱以冬采纳,获得10
30秒前
建成发布了新的文献求助10
30秒前
33秒前
东方既白应助KYRIAL采纳,获得10
34秒前
39秒前
aniver完成签到 ,获得积分10
39秒前
仲夜安发布了新的文献求助10
39秒前
情怀应助一树春风采纳,获得10
43秒前
yujinglu发布了新的文献求助10
44秒前
HIT_WXY完成签到,获得积分10
44秒前
东方既白应助KYRIAL采纳,获得10
44秒前
美丽易云发布了新的文献求助10
46秒前
长情寒凝完成签到,获得积分10
47秒前
48秒前
48秒前
48秒前
48秒前
汉堡包应助老伯unit采纳,获得10
50秒前
Charlie完成签到 ,获得积分10
50秒前
51秒前
奥里给完成签到 ,获得积分10
51秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142187
求助须知:如何正确求助?哪些是违规求助? 2793134
关于积分的说明 7805663
捐赠科研通 2449433
什么是DOI,文献DOI怎么找? 1303289
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291