CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection

计算机科学 预处理器 学习迁移 2019年冠状病毒病(COVID-19) 深度学习 人工智能 建筑 分割 人工神经网络 模式识别(心理学) 机器学习 传染病(医学专业) 疾病 医学 病理 地理 考古
作者
Muhammet Fatih Aslan,Muhammed Fahri Ünlerşen,Kadir Sabancı,Akif Durdu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:98: 106912-106912 被引量:290
标识
DOI:10.1016/j.asoc.2020.106912
摘要

Coronavirus disease 2019 (COVID-2019), which emerged in Wuhan, China in 2019 and has spread rapidly all over the world since the beginning of 2020, has infected millions of people and caused many deaths. For this pandemic, which is still in effect, mobilization has started all over the world, and various restrictions and precautions have been taken to prevent the spread of this disease. In addition, infected people must be identified in order to control the infection. However, due to the inadequate number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, Chest computed tomography (CT) becomes a popular tool to assist the diagnosis of COVID-19. In this study, two deep learning architectures have been proposed that automatically detect positive COVID-19 cases using Chest CT X-ray images. Lung segmentation (preprocessing) in CT images, which are given as input to these proposed architectures, is performed automatically with Artificial Neural Networks (ANN). Since both architectures contain AlexNet architecture, the recommended method is a transfer learning application. However, the second proposed architecture is a hybrid structure as it contains a Bidirectional Long Short-Term Memories (BiLSTM) layer, which also takes into account the temporal properties. While the COVID-19 classification accuracy of the first architecture is 98.14%, this value is 98.70% in the second hybrid architecture. The results prove that the proposed architecture shows outstanding success in infection detection and, therefore this study contributes to previous studies in terms of both deep architectural design and high classification success.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助嘻嘻采纳,获得10
刚刚
刚刚
ytzhang0587给SV的求助进行了留言
刚刚
啊啾啾完成签到,获得积分10
刚刚
CodeCraft应助肖善若采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助銭銭銭采纳,获得10
1秒前
1秒前
FOLLOW发布了新的文献求助10
2秒前
无花果应助徐爱琳采纳,获得10
2秒前
3秒前
3秒前
成就傲霜完成签到,获得积分10
3秒前
哦哦哦发布了新的文献求助10
4秒前
拼搏诗筠发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
木子发布了新的文献求助10
7秒前
7秒前
8秒前
照相机发布了新的文献求助20
8秒前
吕喜梅发布了新的文献求助10
8秒前
云翔完成签到,获得积分10
10秒前
10秒前
wyk发布了新的文献求助10
10秒前
科研通AI6应助XIN采纳,获得10
11秒前
刘娇娇发布了新的文献求助10
11秒前
11秒前
Ava应助起名困难户采纳,获得10
11秒前
Aoops完成签到,获得积分10
12秒前
ll发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
呵呵呵呵发布了新的文献求助10
13秒前
流也完成签到,获得积分10
14秒前
wh发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
星辰大海应助OK采纳,获得10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726