CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection

计算机科学 预处理器 学习迁移 2019年冠状病毒病(COVID-19) 深度学习 人工智能 建筑 分割 人工神经网络 模式识别(心理学) 机器学习 传染病(医学专业) 疾病 医学 病理 地理 考古
作者
Muhammet Fatih Aslan,Muhammed Fahri Ünlerşen,Kadir Sabancı,Akif Durdu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:98: 106912-106912 被引量:290
标识
DOI:10.1016/j.asoc.2020.106912
摘要

Coronavirus disease 2019 (COVID-2019), which emerged in Wuhan, China in 2019 and has spread rapidly all over the world since the beginning of 2020, has infected millions of people and caused many deaths. For this pandemic, which is still in effect, mobilization has started all over the world, and various restrictions and precautions have been taken to prevent the spread of this disease. In addition, infected people must be identified in order to control the infection. However, due to the inadequate number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, Chest computed tomography (CT) becomes a popular tool to assist the diagnosis of COVID-19. In this study, two deep learning architectures have been proposed that automatically detect positive COVID-19 cases using Chest CT X-ray images. Lung segmentation (preprocessing) in CT images, which are given as input to these proposed architectures, is performed automatically with Artificial Neural Networks (ANN). Since both architectures contain AlexNet architecture, the recommended method is a transfer learning application. However, the second proposed architecture is a hybrid structure as it contains a Bidirectional Long Short-Term Memories (BiLSTM) layer, which also takes into account the temporal properties. While the COVID-19 classification accuracy of the first architecture is 98.14%, this value is 98.70% in the second hybrid architecture. The results prove that the proposed architecture shows outstanding success in infection detection and, therefore this study contributes to previous studies in terms of both deep architectural design and high classification success.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小锦完成签到,获得积分10
刚刚
时尚寄真完成签到,获得积分10
刚刚
wangyali发布了新的文献求助10
刚刚
1秒前
爆米花应助友好芷蕊采纳,获得10
1秒前
2秒前
龙彦完成签到,获得积分10
3秒前
fmsai发布了新的文献求助10
3秒前
3秒前
笨笨醉薇发布了新的文献求助10
4秒前
gyd发布了新的文献求助10
4秒前
善良香岚完成签到,获得积分10
5秒前
5秒前
蜗牛完成签到,获得积分10
6秒前
6秒前
HYG发布了新的文献求助10
7秒前
Mansis发布了新的文献求助10
7秒前
时有落花至完成签到,获得积分10
7秒前
7秒前
7秒前
雾见春完成签到 ,获得积分10
8秒前
22222应助科研通管家采纳,获得30
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
平淡向雁完成签到,获得积分10
8秒前
ding应助科研通管家采纳,获得10
8秒前
wanci应助xiaoliang采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
谢大喵应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
魔幻的千山完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340292
求助须知:如何正确求助?哪些是违规求助? 4476835
关于积分的说明 13932933
捐赠科研通 4372659
什么是DOI,文献DOI怎么找? 2402478
邀请新用户注册赠送积分活动 1395350
关于科研通互助平台的介绍 1367444