CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection

计算机科学 预处理器 学习迁移 2019年冠状病毒病(COVID-19) 深度学习 人工智能 建筑 分割 人工神经网络 模式识别(心理学) 机器学习 传染病(医学专业) 疾病 医学 病理 地理 考古
作者
Muhammet Fatih Aslan,Muhammed Fahri Ünlerşen,Kadir Sabancı,Akif Durdu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:98: 106912-106912 被引量:290
标识
DOI:10.1016/j.asoc.2020.106912
摘要

Coronavirus disease 2019 (COVID-2019), which emerged in Wuhan, China in 2019 and has spread rapidly all over the world since the beginning of 2020, has infected millions of people and caused many deaths. For this pandemic, which is still in effect, mobilization has started all over the world, and various restrictions and precautions have been taken to prevent the spread of this disease. In addition, infected people must be identified in order to control the infection. However, due to the inadequate number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, Chest computed tomography (CT) becomes a popular tool to assist the diagnosis of COVID-19. In this study, two deep learning architectures have been proposed that automatically detect positive COVID-19 cases using Chest CT X-ray images. Lung segmentation (preprocessing) in CT images, which are given as input to these proposed architectures, is performed automatically with Artificial Neural Networks (ANN). Since both architectures contain AlexNet architecture, the recommended method is a transfer learning application. However, the second proposed architecture is a hybrid structure as it contains a Bidirectional Long Short-Term Memories (BiLSTM) layer, which also takes into account the temporal properties. While the COVID-19 classification accuracy of the first architecture is 98.14%, this value is 98.70% in the second hybrid architecture. The results prove that the proposed architecture shows outstanding success in infection detection and, therefore this study contributes to previous studies in terms of both deep architectural design and high classification success.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王天宇发布了新的文献求助10
1秒前
无极微光应助石头采纳,获得20
1秒前
好人一生平安喵完成签到,获得积分10
1秒前
2秒前
开朗白山完成签到,获得积分10
2秒前
2秒前
科目三应助文静的海采纳,获得10
2秒前
mhpvv发布了新的文献求助10
3秒前
3秒前
汉堡包应助xueshulang采纳,获得10
3秒前
5秒前
Sylvia发布了新的文献求助30
5秒前
6秒前
123123发布了新的文献求助10
6秒前
研友_VZG7GZ应助777采纳,获得10
6秒前
苹果夜梦完成签到 ,获得积分10
6秒前
Czf完成签到 ,获得积分10
7秒前
飞快的梦山完成签到,获得积分10
8秒前
nenoaowu发布了新的文献求助10
8秒前
8秒前
ppyyg发布了新的文献求助10
8秒前
11秒前
11秒前
英姑应助五五乐采纳,获得10
11秒前
领导范儿应助我的小k8采纳,获得10
11秒前
星辰大海应助nenoaowu采纳,获得10
11秒前
queengause完成签到,获得积分10
12秒前
沉静丹寒发布了新的文献求助10
12秒前
mpshupi完成签到,获得积分10
12秒前
深情安青应助小化采纳,获得10
13秒前
zho应助等待冰之采纳,获得10
13秒前
奥特曼黑黑完成签到,获得积分10
13秒前
张三完成签到,获得积分10
14秒前
铜锣湾小研仔完成签到,获得积分0
15秒前
于鱼完成签到,获得积分10
16秒前
繁星长明应助薄荷味采纳,获得20
16秒前
共享精神应助李彦采纳,获得10
17秒前
NexusExplorer应助沉静丹寒采纳,获得10
19秒前
王天宇完成签到,获得积分10
19秒前
星辰大海应助xuan采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487