亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection

计算机科学 预处理器 学习迁移 2019年冠状病毒病(COVID-19) 深度学习 人工智能 建筑 分割 人工神经网络 模式识别(心理学) 机器学习 传染病(医学专业) 疾病 医学 病理 地理 考古
作者
Muhammet Fatih Aslan,Muhammed Fahri Ünlerşen,Kadir Sabancı,Akif Durdu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:98: 106912-106912 被引量:290
标识
DOI:10.1016/j.asoc.2020.106912
摘要

Coronavirus disease 2019 (COVID-2019), which emerged in Wuhan, China in 2019 and has spread rapidly all over the world since the beginning of 2020, has infected millions of people and caused many deaths. For this pandemic, which is still in effect, mobilization has started all over the world, and various restrictions and precautions have been taken to prevent the spread of this disease. In addition, infected people must be identified in order to control the infection. However, due to the inadequate number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, Chest computed tomography (CT) becomes a popular tool to assist the diagnosis of COVID-19. In this study, two deep learning architectures have been proposed that automatically detect positive COVID-19 cases using Chest CT X-ray images. Lung segmentation (preprocessing) in CT images, which are given as input to these proposed architectures, is performed automatically with Artificial Neural Networks (ANN). Since both architectures contain AlexNet architecture, the recommended method is a transfer learning application. However, the second proposed architecture is a hybrid structure as it contains a Bidirectional Long Short-Term Memories (BiLSTM) layer, which also takes into account the temporal properties. While the COVID-19 classification accuracy of the first architecture is 98.14%, this value is 98.70% in the second hybrid architecture. The results prove that the proposed architecture shows outstanding success in infection detection and, therefore this study contributes to previous studies in terms of both deep architectural design and high classification success.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助shw采纳,获得100
6秒前
8秒前
张志超发布了新的文献求助10
9秒前
10秒前
波波完成签到 ,获得积分10
11秒前
14秒前
谨慎嫣然发布了新的文献求助10
15秒前
15秒前
Yun完成签到 ,获得积分10
15秒前
16秒前
闪闪的梦柏完成签到 ,获得积分10
16秒前
甜蜜的大树完成签到,获得积分10
24秒前
充电宝应助Betsy采纳,获得10
24秒前
谨慎嫣然完成签到,获得积分10
26秒前
uss完成签到,获得积分10
27秒前
27秒前
31秒前
粱涵易发布了新的文献求助10
33秒前
张志超发布了新的文献求助20
33秒前
认真日记本完成签到 ,获得积分10
34秒前
grata发布了新的文献求助20
36秒前
Hailhai发布了新的文献求助10
37秒前
39秒前
lizhian完成签到,获得积分10
41秒前
ding应助粱涵易采纳,获得10
49秒前
张志超发布了新的文献求助20
53秒前
57秒前
桐桐应助不想工作的小辉采纳,获得10
1分钟前
Otter完成签到,获得积分10
1分钟前
grata完成签到,获得积分20
1分钟前
mm完成签到 ,获得积分10
1分钟前
超帅婷冉完成签到 ,获得积分20
1分钟前
1分钟前
UKU发布了新的文献求助10
1分钟前
无极微光应助科研通管家采纳,获得20
1分钟前
张志超发布了新的文献求助10
1分钟前
1分钟前
别斑秃了完成签到 ,获得积分10
1分钟前
1分钟前
Betsy发布了新的文献求助10
1分钟前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622128
求助须知:如何正确求助?哪些是违规求助? 4707032
关于积分的说明 14938367
捐赠科研通 4768163
什么是DOI,文献DOI怎么找? 2552148
邀请新用户注册赠送积分活动 1514298
关于科研通互助平台的介绍 1474998