已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A proof of the instability of AdS for the Einstein-null dust system with an inner mirror

爱因斯坦 猜想 物理 共形映射 标量场 空(SQL) 爱因斯坦场方程 不稳定性 测地线 数学物理 数学分析 数学 纯数学 量子力学 数据库 计算机科学
作者
Georgios Moschidis
出处
期刊:Analysis & PDE [Mathematical Sciences Publishers]
卷期号:13 (6): 1671-1754 被引量:39
标识
DOI:10.2140/apde.2020.13.1671
摘要

In 2006, Dafermos and Holzegel [19, 18] formulated the so-called AdS instability conjecture, stating that there exist arbitrarily small perturbations to AdS initial data which, under evolution by the Einstein vacuum equations for Λ < 0 with reflecting boundary conditions on conformal infinity I, lead to the formation of black holes.The numerical study of this conjecture in the simpler setting of the spherically symmetric Einstein-scalar field system was initiated by Bizon and Rostworowski [8], followed by a vast number of numerical and heuristic works by several authors.In this paper, we provide the first rigorous proof of the AdS instability conjecture in the simplest possible setting, namely for the spherically symmetric Einstein-massless Vlasov system, in the case when the Vlasov field is moreover supported only on radial geodesics.This system is equivalent to the Einstein-null dust system, allowing for both ingoing and outgoing dust.In order to overcome the break down of this system occuring once the null dust reaches the centre r = 0, we place an inner mirror at r = r0 > 0 and study the evolution of this system on the exterior domain {r ≥ r0}.The structure of the maximal development and the Cauchy stability properties of general initial data in this setting are studied in our companion paper [48].The statement of the main theorem is as follows: We construct a family of mirror radii r0ε > 0 and initial data Sε, ε ∈ (0, 1], converging, as ε → 0, to the AdS initial data S0 in a suitable norm, such that, for any ε ∈ (0, 1], the maximal development (Mε, gε) of Sε contains a black hole region.Our proof is based on purely physical space arguments and involves the arrangement of the null dust into a large number of beams which are successively reflected off {r = r0ε} and I, in a configuration that forces the energy of a certain beam to increase after each successive pair of reflections.As ε → 0, the number of reflections before a black hole is formed necessarily goes to +∞.We expect that this instability mechanism can be applied to the case of more general matter fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不筝发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
搜集达人应助和谐的清采纳,获得10
4秒前
Zbzb发布了新的文献求助10
6秒前
AAA建材收银完成签到,获得积分10
6秒前
7秒前
李健应助不筝采纳,获得10
7秒前
星夜发布了新的文献求助10
8秒前
9秒前
10秒前
Moo5_zzZ完成签到,获得积分10
12秒前
Zbzb完成签到,获得积分20
12秒前
熊22发布了新的文献求助20
14秒前
liian7完成签到,获得积分10
14秒前
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
wenhaw完成签到 ,获得积分10
15秒前
英俊的铭应助科研通管家采纳,获得20
15秒前
15秒前
xu完成签到 ,获得积分10
15秒前
hitdsh应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
alex应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
大笑的觅珍完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407145
求助须知:如何正确求助?哪些是违规求助? 4524806
关于积分的说明 14100192
捐赠科研通 4438630
什么是DOI,文献DOI怎么找? 2436417
邀请新用户注册赠送积分活动 1428409
关于科研通互助平台的介绍 1406443