已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mass load prediction for lithium-ion battery electrode clean production: A machine learning approach

电池(电) 计算机科学 生产(经济) 特征(语言学) 工艺工程 汽车工程 人工智能 工程类 语言学 量子力学 物理 哲学 宏观经济学 经济 功率(物理)
作者
Kailong Liu,Zhongbao Wei,Zhile Yang,Kang Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:289: 125159-125159 被引量:95
标识
DOI:10.1016/j.jclepro.2020.125159
摘要

With the advent of sustainable and clean energy, lithium-ion batteries have been widely utilised in cleaner productions such as energy storage systems and electrical vehicles, but the management of their electrode production chain has a direct and crucial impact on the battery performance and production efficiency. To achieve a cleaner production chain of battery electrode involving strongly-coupled intermediate parameters and control parameters, a reliable approach to quantify the feature importance and select the key feature variables for predicting battery intermediate products is urgently required. In this paper, a Gaussian process regression-based machine learning framework, which incorporates powerful automatic relevance determination kernels, is proposed for directly quantifying the importance of four intermediate production feature variables and analysing their influences on the prediction of battery electrode mass load. Specifically, these features include three intermediate parameters from the mixing step and a control parameter from the coating step. After deriving four different automatic relevance determination kernels, the importance of these four feature variables based on a regression modelling is comprehensively analysed. Comparative results demonstrate that the proposed automatic relevance determination kernel-based Gaussian process regression models could not only quantify the importance weights for reliable feature selections but also help to achieve satisfactory electrode mass load prediction. Due to the data-driven nature, the proposed framework can be conveniently extended to improve the analysis and control of battery electrode production, further benefitting the manufactured battery yield, efficiencies and performance to achieve cleaner battery production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
微风完成签到 ,获得积分10
1秒前
东方欲晓发布了新的文献求助10
1秒前
2秒前
淡然靖柔发布了新的文献求助10
2秒前
3秒前
汉堡包应助HGalong采纳,获得10
4秒前
6秒前
Owen应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
jokerhoney应助科研通管家采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
7秒前
忘北曲发布了新的文献求助10
8秒前
高高平蝶完成签到 ,获得积分10
9秒前
LD发布了新的文献求助10
11秒前
wuyan发布了新的文献求助10
11秒前
东方欲晓完成签到,获得积分10
11秒前
12秒前
淡然靖柔完成签到,获得积分10
12秒前
zzz完成签到,获得积分10
14秒前
无花果应助菜鸟一枚采纳,获得30
17秒前
wanci应助llllly采纳,获得10
20秒前
567发布了新的文献求助10
21秒前
炽恩完成签到,获得积分10
21秒前
23秒前
沙里飞完成签到 ,获得积分10
24秒前
我有机会完成签到 ,获得积分10
26秒前
Owen应助我有乖乖吃饭采纳,获得10
27秒前
sin完成签到,获得积分10
28秒前
tiantian发布了新的文献求助10
28秒前
29秒前
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154727
求助须知:如何正确求助?哪些是违规求助? 2805550
关于积分的说明 7865140
捐赠科研通 2463749
什么是DOI,文献DOI怎么找? 1311579
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601832