Mass load prediction for lithium-ion battery electrode clean production: A machine learning approach

电池(电) 计算机科学 生产(经济) 特征(语言学) 工艺工程 汽车工程 人工智能 工程类 语言学 量子力学 物理 哲学 宏观经济学 经济 功率(物理)
作者
Kailong Liu,Zhongbao Wei,Zhile Yang,Kang Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:289: 125159-125159 被引量:95
标识
DOI:10.1016/j.jclepro.2020.125159
摘要

With the advent of sustainable and clean energy, lithium-ion batteries have been widely utilised in cleaner productions such as energy storage systems and electrical vehicles, but the management of their electrode production chain has a direct and crucial impact on the battery performance and production efficiency. To achieve a cleaner production chain of battery electrode involving strongly-coupled intermediate parameters and control parameters, a reliable approach to quantify the feature importance and select the key feature variables for predicting battery intermediate products is urgently required. In this paper, a Gaussian process regression-based machine learning framework, which incorporates powerful automatic relevance determination kernels, is proposed for directly quantifying the importance of four intermediate production feature variables and analysing their influences on the prediction of battery electrode mass load. Specifically, these features include three intermediate parameters from the mixing step and a control parameter from the coating step. After deriving four different automatic relevance determination kernels, the importance of these four feature variables based on a regression modelling is comprehensively analysed. Comparative results demonstrate that the proposed automatic relevance determination kernel-based Gaussian process regression models could not only quantify the importance weights for reliable feature selections but also help to achieve satisfactory electrode mass load prediction. Due to the data-driven nature, the proposed framework can be conveniently extended to improve the analysis and control of battery electrode production, further benefitting the manufactured battery yield, efficiencies and performance to achieve cleaner battery production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助风中寄云采纳,获得10
刚刚
屹舟发布了新的文献求助10
刚刚
Dou完成签到,获得积分10
刚刚
白泯完成签到,获得积分10
1秒前
1ssd发布了新的文献求助10
1秒前
667发布了新的文献求助10
1秒前
小二郎应助辰柒采纳,获得10
2秒前
3秒前
3秒前
clear完成签到,获得积分20
3秒前
3秒前
orixero应助congguitar采纳,获得10
3秒前
Evan完成签到,获得积分10
3秒前
YANG发布了新的文献求助10
4秒前
4秒前
123发布了新的文献求助10
4秒前
sunzhiyu233发布了新的文献求助10
5秒前
Raul完成签到 ,获得积分10
5秒前
5秒前
伯尔尼圆白菜完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
buuyoo完成签到,获得积分10
6秒前
科研通AI5应助魏煜佳采纳,获得10
6秒前
LLxiaolong完成签到,获得积分10
6秒前
7秒前
7秒前
巨噬细胞A完成签到,获得积分10
7秒前
7秒前
我要读博士完成签到 ,获得积分10
7秒前
xxq完成签到,获得积分20
7秒前
福气小姐完成签到 ,获得积分10
7秒前
搜集达人应助jjy采纳,获得10
8秒前
8秒前
郑总完成签到,获得积分10
8秒前
CipherSage应助马尼拉采纳,获得10
8秒前
SCI完成签到 ,获得积分10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759