Mass load prediction for lithium-ion battery electrode clean production: A machine learning approach

电池(电) 计算机科学 生产(经济) 特征(语言学) 工艺工程 汽车工程 人工智能 工程类 语言学 量子力学 物理 哲学 宏观经济学 经济 功率(物理)
作者
Kailong Liu,Zhongbao Wei,Zhile Yang,Kang Li
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:289: 125159-125159 被引量:95
标识
DOI:10.1016/j.jclepro.2020.125159
摘要

With the advent of sustainable and clean energy, lithium-ion batteries have been widely utilised in cleaner productions such as energy storage systems and electrical vehicles, but the management of their electrode production chain has a direct and crucial impact on the battery performance and production efficiency. To achieve a cleaner production chain of battery electrode involving strongly-coupled intermediate parameters and control parameters, a reliable approach to quantify the feature importance and select the key feature variables for predicting battery intermediate products is urgently required. In this paper, a Gaussian process regression-based machine learning framework, which incorporates powerful automatic relevance determination kernels, is proposed for directly quantifying the importance of four intermediate production feature variables and analysing their influences on the prediction of battery electrode mass load. Specifically, these features include three intermediate parameters from the mixing step and a control parameter from the coating step. After deriving four different automatic relevance determination kernels, the importance of these four feature variables based on a regression modelling is comprehensively analysed. Comparative results demonstrate that the proposed automatic relevance determination kernel-based Gaussian process regression models could not only quantify the importance weights for reliable feature selections but also help to achieve satisfactory electrode mass load prediction. Due to the data-driven nature, the proposed framework can be conveniently extended to improve the analysis and control of battery electrode production, further benefitting the manufactured battery yield, efficiencies and performance to achieve cleaner battery production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏感的咖啡豆完成签到 ,获得积分10
刚刚
虚心的函完成签到,获得积分10
1秒前
szhshq完成签到,获得积分10
2秒前
爱吃蒸蛋完成签到,获得积分10
3秒前
3秒前
123完成签到 ,获得积分10
4秒前
Orange应助读书的时候采纳,获得10
4秒前
小胡先森发布了新的文献求助10
4秒前
酷酷薯片发布了新的文献求助20
4秒前
5秒前
威武鸽子完成签到 ,获得积分20
5秒前
Beyond发布了新的文献求助10
9秒前
10秒前
123完成签到,获得积分10
10秒前
玩命的凝天完成签到,获得积分10
10秒前
小胡先森完成签到,获得积分10
11秒前
12秒前
12秒前
Ava应助慕容松采纳,获得10
12秒前
happyness完成签到,获得积分10
13秒前
fmsai完成签到,获得积分10
14秒前
accepted应助zzx采纳,获得10
15秒前
星辰大海应助彩色的无声采纳,获得10
16秒前
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
iNk应助科研通管家采纳,获得20
17秒前
Mr完成签到,获得积分10
17秒前
wy.he应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得30
17秒前
iNk应助科研通管家采纳,获得20
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
凉凉应助科研通管家采纳,获得10
17秒前
挖掘机应助科研通管家采纳,获得100
17秒前
18秒前
18秒前
Hello应助科研通管家采纳,获得10
18秒前
王小树完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024121
求助须知:如何正确求助?哪些是违规求助? 3564038
关于积分的说明 11344130
捐赠科研通 3295295
什么是DOI,文献DOI怎么找? 1815040
邀请新用户注册赠送积分活动 889661
科研通“疑难数据库(出版商)”最低求助积分说明 813091