已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mass load prediction for lithium-ion battery electrode clean production: A machine learning approach

电池(电) 计算机科学 生产(经济) 特征(语言学) 工艺工程 汽车工程 人工智能 工程类 量子力学 物理 宏观经济学 哲学 经济 功率(物理) 语言学
作者
Kailong Liu,Zhongbao Wei,Zhile Yang,Kang Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:289: 125159-125159 被引量:95
标识
DOI:10.1016/j.jclepro.2020.125159
摘要

With the advent of sustainable and clean energy, lithium-ion batteries have been widely utilised in cleaner productions such as energy storage systems and electrical vehicles, but the management of their electrode production chain has a direct and crucial impact on the battery performance and production efficiency. To achieve a cleaner production chain of battery electrode involving strongly-coupled intermediate parameters and control parameters, a reliable approach to quantify the feature importance and select the key feature variables for predicting battery intermediate products is urgently required. In this paper, a Gaussian process regression-based machine learning framework, which incorporates powerful automatic relevance determination kernels, is proposed for directly quantifying the importance of four intermediate production feature variables and analysing their influences on the prediction of battery electrode mass load. Specifically, these features include three intermediate parameters from the mixing step and a control parameter from the coating step. After deriving four different automatic relevance determination kernels, the importance of these four feature variables based on a regression modelling is comprehensively analysed. Comparative results demonstrate that the proposed automatic relevance determination kernel-based Gaussian process regression models could not only quantify the importance weights for reliable feature selections but also help to achieve satisfactory electrode mass load prediction. Due to the data-driven nature, the proposed framework can be conveniently extended to improve the analysis and control of battery electrode production, further benefitting the manufactured battery yield, efficiencies and performance to achieve cleaner battery production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cece发布了新的文献求助10
3秒前
小王完成签到 ,获得积分10
3秒前
susu驳回了Hello应助
4秒前
xk完成签到 ,获得积分20
7秒前
orixero应助学术渣渣采纳,获得10
9秒前
11秒前
13秒前
13秒前
xk关注了科研通微信公众号
14秒前
聪明勇敢有力气完成签到 ,获得积分10
15秒前
aaa啊啊啊完成签到,获得积分10
15秒前
xiuxiuzhang完成签到 ,获得积分10
16秒前
youli完成签到 ,获得积分10
16秒前
18秒前
阔达忆秋完成签到 ,获得积分10
21秒前
鲍惜寒完成签到 ,获得积分20
21秒前
七舟发布了新的文献求助20
22秒前
23秒前
田様应助王威采纳,获得10
26秒前
捏捏完成签到,获得积分10
26秒前
YU完成签到 ,获得积分10
28秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
明亮紫易完成签到,获得积分10
30秒前
Owen应助科研通管家采纳,获得10
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
30秒前
Ash完成签到,获得积分10
31秒前
36秒前
38秒前
姆姆没买完成签到 ,获得积分0
39秒前
TEO完成签到 ,获得积分10
39秒前
39秒前
王威发布了新的文献求助10
41秒前
时尚静竹发布了新的文献求助10
41秒前
领导范儿应助bless采纳,获得10
49秒前
淮安石河子完成签到 ,获得积分10
49秒前
共享精神应助jcx采纳,获得10
50秒前
50秒前
时尚静竹完成签到,获得积分10
51秒前
快乐姒完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469870
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337487
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465296
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259